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Abstract—Group activities like group dance, military parade,
or radio gymnastics have excellent ornamental value with its
grand scale and uniform movements, while it also introduces
difficulties in practice for coaches to monitor and correct the
movements and locations of each participator. Wireless body area
network (WBAN) is a promising direction for accurate motion
tracking in large-scale group activities. Light-weight sensors can
be deployed on participant bodies and transmit motion and
channel sensing data through wireless spectrum for further
analysis. To keep the high quality of service (QoS) of the WBAN
on group activity monitoring and correction, three aspects should
be achieved by careful designing: (i) less energy consumption; (ii)
higher analysis accuracy; and (iii) lower feedback latency.

Due to the low-rankness of motion and channel sensory data,
we propose GroupCoach, a Compressed Sensing (CS) based group
activity monitoring and correction system. The data is collected
and reconstructed by CS, where the spatial and temporal stabil-
ities of group activities are explored for a higher reconstruction
accuracy. These reconstructed sensory data are further compared
with their anchor values for faulty movement detection and
correction. The channel attenuation caused by body shielding is
reduced by a near-to-far diffusion model with the consideration
of the body impact factor. The correction suggestions are finally
fed back to sensors for guidance. Evaluations based on the
prototype deployed on real group activity participators prove
the high QoS of the GroupCoach. It achieves low sensor energy
consumption, high data reconstruction accuracy, accurate faulty
motion detection and correction, together with fast alert.

I. INTRODUCTION

Group activity, as opposed to couple activity or individual
activity, is standardized for groups of participators to perform
in same steps and directions synchronously, such as group
dance, military parade, radio gymnastics, or collective rehabil-
itation exercises [1]. This kind of activities generally requires
multiple coaches to monitor and correct the movements and lo-
cations of participators from different angles, which consumes
more manpower with the scaling of the team [2].

With the help of modern technologies, a number of methods
have been researched in multi-person motion tracking. The
vision-based methods utilizing cameras [3], depth sensors [4],
or infrared projectors [5] are intuitive but computationally
expensive. The fibre-optic and joint bend body sensors [6]
provide accurate transmission, while the massive cables dra-
matically limit the ranges and speeds of body motions. On the
contrary, the Wireless Body Area Network (WBAN) is promis-
ing due to light-weight body sensors and flexible wireless
communications [7]. As shown in Fig. 1, sensors are deployed

Fig. 1. The WBAN for group activity monitoring and correction [Acc:
Accelerometer, Gyro: Gyroscope].

on key body parts of every participator, where the sensory data
are continuously transmitted to the fusion centre for further
movement analysis via the wireless spectrum. The motion
sensory data collected from accelerometer and gyroscope
reveal the motion accelerations and directions for individual
body parts, and the channel status, such as Received Signal
Strength Index (RSSI), is sensed to estimate the locations of
participators.

Nonetheless, it is still challengeable to deliver high quality
of service (QoS) of this WBAN on group activity monitoring
and correction. Three aspects should be achieved to guarantee
QoS by careful designs:

1) Less consumption: Body sensor nodes are expected
to perform long-term sensing and transmission, so an
energy-efficient sensing strategy is required to deal with
their limited powers.

2) Higher accuracy: The accuracy of data aggregation and
analysis could be affected by transmission interferences
in dynamic group activities, such as channel attenuation,
packet loss, etc. Accurate data reconstruction and faulty
movement detection algorithms should be designed to
avoid their side effects.

3) Lower latency: It is necessary to perform monitoring and
correction in real-time, where both the transmission and
calculation latencies should be low.

Motivated by Fig. 2(a), the low-rankness of sensory data
on single or multiple participators derives the utilization of
Compressed Sensing (CS) [8] for data acquisition and re-
construction. It guarantees an accurate recovery with a lower
sampling rate than the Shannon-Nyquist sampling on sparse978-1-7281-6887-6/20/$31.00 c© 2020 IEEE
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(a) The low-rank feature of sensory data.
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(b) The temporal stability of inertial sensory
data based on music bars.
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(c) The spatial stability of channel sensory
data according to time.

Fig. 2. The motivations and observations of the CS design.

sensory data [9]. We also observe the spatial and temporal
stabilities of sensory data in group activities. For inertial
sensory data (i.e., data from accelerometer and gyroscope),
their values are replicated among bars of songs as shown in
Fig. 2(b). For channel sensory data, the RSSI values between
adjacent participators have fixed difference w.r.t. time but
related to relative locations. As indicated in Fig. 2(c), when
there are three dancers standing in a same line in front of the
sink and their positions are changed by activity arrangements,
then the RSSI differences (∆r1,∆r2,∆r3 in the figure) is
stable w.r.t. time within the range of faulty threshold. But
they are changed w.r.t. distances, which is further proved to be
impacted by the body shielding. Taking these observations into
consideration, the optimization problem for data reconstruction
can be improved to measure such stabilities, resulting in a
higher reconstruction accuracy. Recent advances when apply
CS into WBAN generally researched on an optimal sparsifi-
cation model [10], a configurable quantization method [9], or
a secure body sensory data transmission [11]. To the best of
our knowledge, this work is the first attempt to apply CS in
group activity monitoring, with characters of group movements
involved.

For further faulty movement detection and correction, the
reconstructed data are compared with the calculated anchor
values. Coming to the scene of group actions, the nonneg-
ligible channel attenuation caused by body shielding of par-
ticipators disturbs the estimation of their locations from RSSI
values. To cope with this problem, we specially design a Body
Impacted Near-to-Far (BINF) diffusion model to describe the
mapping from RSSIs to real locations of group participators.
As participators in the first row have no body shielded in
front, their locations can be firstly settled down and ones in
the farther rows can be calculated outwards when considering
the body impact factor.

To sum up, we propose GroupCoach, a CS-based group
activity monitoring and correction system with better QoS. It
(i) utilizes the emerging CS techniques to prolong the lifespan
of wireless body sensors, (ii) increases the reconstruction
accuracy with the consideration of movement regularities, and
(iii) accurately detects and corrects faulty movements with
a BINF diffusion model. Besides, both the low calculation
complexity and the less transmission quantity lead to the lower
latency of this system. Although the GroupCoach is designed

for organized group activities, it can be easily extended to
more complicated group scenarios.

To evaluate the feasibility and efficiency of GroupCoach,
we deploy the prototype of this system to a real group of
participators and collect their motion and channel data for
analysis. According to the real-life evaluations, the average
Mean Square Error (MSE) of data reconstruction in Group-
Coach is 5.49e−5 which is dramatically lower than the linear
interpolation [12] (0.70), the tensor reconstruction [13] (1.50),
and alternating steepest descent (ASD) [14] (3.37), even with
the 70% compression ratio. Additionally, the GroupCoach
can remains over 98% recall and 95% precision in faulty
movement detection and correction. The latency of one round
reaction for GroupCoach is around 1.836s in total, which is
acceptable in QoS-required group activity monitoring.

Our main contributions are as follows:
1) We explore the spatial and temporal stabilities of organized

group activities and the low-rankness of motion and chan-
nel sensory data, deriving the appliance of CS techniques
into daily use, with higher accuracy on data reconstruction
and energy saving.

2) We design a BINF diffusion model to solve the channel
attenuation problem caused by body shielding and increase
the location estimation accuracy from sensed RSSI values.

3) We comprehensively design a CS-based group activity
monitoring and correction system named as GroupCoach.
It provides high QoS including less power consumption,
higher aggregation and analysis accuracy, and lower pro-
cessing latency, proved by a real-life deployed prototype.

II. RELATED WORK

In this section, we discuss two related topics: multi-person
motion tracking and energy-efficient WBAN.

A. Multi-person Motion Tracking

One intuitive multi-person motion tracking direction is
vision-based, utilizing either cameras, depth sensors, or in-
frared projectors [3], [5]. As one of the popular off-the-shelf
vision-based motion tracking device, Microsoft Kinect [4] is
composed by all these facilities. It retrieves 3D information of
a scene to analyze the depth map and skeletal joint information
of the tracked human body. It is easy to install and fairly
widespread especially in robotics, which can provide live
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results for dynamic monitoring. But it requires pre-trained
human body models which are computationally expensive for
different tracking targets.

Another promising direction is sensor-based, which deploys
motion sensors directly on the target body. The fibre-optic,
joint bend body sensors can provide accurate transmission
by massive cables, which are preferred in extreme environ-
ments [6]. But they dramatically limit the speed and range
of movements for group participators. Conversely, WBAN is
quite flexible composed by several small-size, ultra-low-power,
and intelligent-monitoring wearable sensors communicating in
wireless scheme [7]. The wireless sensors mounted on the
body range in WBAN can support continuous monitoring on
multi-person physiological conditions and real-time transmis-
sion to the fusion centre for analysis and feedback.

Several popular commercially available or open-source
multi-body analysis systems are LifeModeler [15], Any-
Body [16], D-Flow [17], Visual3D [18], Unity [19] and Open-
Sim [20]. They interface with third-party hardware and provide
straightforward motion tracking results. However, none of
them can support faulty motion detection, which is required
to be extendedly designed for group activity correction. Saha
et al. [21] inspires our faulty movement detection by their
abnormal electroencephalography (EEG) analysis in driving.
As guidance, their core idea is to find the difference between
the collected sensory data and the anchor values.

B. Energy-efficient WBAN

Since the wireless body sensors mounted on the body are
generally portable with the small size of the battery, it requires
an energy-efficient design to prolong the lifespan of sensors
and monitoring durations in WBAN. The energies of sensors
are mainly consumed in three stages: data sensing, processing,
and transmission, where the transmission stage is proved to be
the most power-consumption [22]. Efforts have been devoted
to transmission energy saving by designing energy-efficient
hardware scheduling [23], routing protocol [24] or leveraging
distributed beamforming [25]. Another promising solution is
to decrease the transmission quantity. Optimized light-weight
deep learning models for data preprocessing can accurately
filter out redundant sensing data before transmission [26].
Although the transmission energy is saved by these methods,
the processing energy for model running is nonnegligible.

Due to the low-rankness of sensory data collected in
WBAN, recent advances explore the feasibility of CS [8]
techniques to compress the body sensory data. Compared with
the above-mentioned methods, CS techniques have lower pro-
cessing consumption on sensors and lower transmission cost,
together with a high reconstruction accuracy [9]–[11]. Two
directions have been thoroughly researched in recent advances:
one is “how to optimally compress the sensory data”, which
is related to the sparsification model selection [10] and a
configurable quantization decision [9]; another one is “how
to accurately reconstruct the compressed data”, by combining
the spatial and temporal features of sensory data [13]. In this
paper, we attempt to apply CS into group activity monitoring

and correction, with the consideration of spatial and temporal
stabilities of organized group movements.

III. PROBLEM STATEMENT

We consider a group activity consisting of N participators
who follow a T -minute song. There are P sensors mounted on
their bodies which upload sensory data after every τ durations.
Considering the processing latency t for one round communi-
cation, the QoS of GroupCoach requires τ > t. The sensory
data contains the accelerometer data a(p, i, j), gyroscope data
b(p, i, j), and RSSI data c(p, i, j) for the p-th sensor on the i-
th participator at the j-th timestamp, where p ∈ [P ], i ∈ [N ],

and j ∈ [T ]. Note that a(p, i, j) =

 ax(p, i, j)
ay(p, i, j)
az(p, i, j)


3×1

and

b(p, i, j) =

 bx(p, i, j)
by(p, i, j)
bz(p, i, j)


3×1

are 3×1 matrices while c(i, j)

is a 1×1 value. Several necessary mathematical definitions are
presented below for problem formulation and the summary of
notations are represented in Table. I.

Definition III.1. (Original Matrix (OM)) OM is the full
collection matrix at each time slot τ with the sampling ratio
β, which is not compressed or distorted with missing values.
We use three matrices A,B, and C to denote the OMs for
accelerometer, gyroscope, and RSSI sensory data, respectively.
For computational simplicity, the data of different sensors on
different bodies at the same timestamp are arranged by rows,
leading to three 2-dimension matrices:

A = [a(p, i, j)]3PN×βτ
B = [b(p, i, j)]3PN×βτ
C = [c(i, j)]N×βτ .

(1)

As the rest of definitions have the same operations on A,B
and C, we will only explain the A-version due to the limitation
of paper space.

Definition III.2. (Sampling Matrix (SaM)) The SaMs
MA,MB ,MC are randomly generated matrices containing 0s
and 1s, whose sizes are corresponding to OMs. They describe
whether the data in OMs is for generating SeMs or not. The
value “1” in each SaM is randomly generated according to the
compression ratio α.

Definition III.3. (Sensory Matrix (SeM)) The SeM contains
the sensory data uploaded to the fusion centre, where missing
values may exist due to the transmission interferences. We
denote SeM as SA, SB , and SC , and defined as:

A ◦MA = SA, (2)

where the operator ◦ represents standard matrix multiplication.
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TABLE I
SUMMARY OF NOTATIONS

P The number of sensors on each body
N The number of participators
T The length of background music
τ, β The sampling duration and ratio
α The compression ratio for CS

p, i, j The sequence of body part, participator, and time
A,B,C OMs

MA,MB ,MC SaMs
SA, SB , SC SeMs
Â, B̂, Ĉ RMs
A

′
, B

′
, C

′
AMs

Ã, B̃, C̃ CMs
δ The faulty threshold

Definition III.4. (Reconstructed Matrix (RM)) The RM is
reconstructed from SA, SB and SC according to SaMs. We
denote RMs by

Â = [â(p, i, j)]3PN×βτ
B̂ = [b̂(p, i, j)]3PN×βτ
Ĉ = [ĉ(i, j)]N×βτ .

(3)

Problem 1. (Data Reconstruction) Given SA, SB , SC , and M ,
the data reconstruction is to determine the optimal Â, B̂ and
Ĉ with the minimum difference with OMs A,B and C. The
optimization problem is formulated as:

Objective: min
∥∥∥A− Â∥∥∥

F
Subject to: SA,MA,

(4)

where ‖·‖ is the Frobenius norm.

Definition III.5. (Anchor Matrix (AM)) The AMs represent
theoretical values for both motion and sensory data. According
to the choreography of group activities, these theoretical values
can be calculated by the standard movements and locations.
We denote AMs as A

′
, B

′
and C

′
, performing as the anchor

for faulty movement detection and correction. And

A
′

= [a
′
(p, i, j)]3PN×βτ

B
′

= [b
′
(p, i, j)]3PN×βτ

C
′

= [c
′
(i, j)]N×βτ .

(5)

Definition III.6. (Correction Matrix (CM)) The CMs record
the correction suggestions on motions and locations. We
denote CMs as Ã, B̃, C̃:

Ã =

{
ã(p, i, j) , if (p, i, j) has wrong motion

0 , if (p, i, j) has right motion

C̃ =

{
c̃(i, j) , if (i, j) has wrong location

0 , if (i, j) has right location

(6)

Problem 2. (Faulty movement detection) Given RMs Â, B̂, Ĉ,
and AMs A

′
, B

′
, C

′
, the faulty movement is detected by com-

paring their values. With the faulty threshold δ, the problem
is formulated as:
∣∣∣a′

(p, i, j)− â(p, i, j)
∣∣∣ > δ , i is wrong at time j on p∣∣∣a′

(p, i, j)− â(p, i, j)
∣∣∣ ≤ δ , i is right at time j on p.

(7)

Fig. 3. The illustrations for the network model, sensor deployment, and
system overview of GroupCoach.

IV. DESIGN OF GroupCoach

In this section, we will present the system overview of
GroupCoach and its detailed designs.

A. System Overview

GroupCoach is a CS-based system to monitor and correct
the movements for group activity participators. Taking the
group dance as an example, we present the system overview
in Fig. 3. We deploy sensors on 9 key body parts, including
upper arms, wrists, legs, ankles on two sides of the body
and the chest. The previous 8 sensors are used for individual
movement analysis, and the RSSIs reported by chest sensors
are used for distance analysis. This system is composed of
three main stages: compressed collection, data reconstruction,
and faulty data detection and correction. Only the first stage
is performed on sensors while others are in the fusion centre.
The CS techniques are applied to the former two stages,
which can reduce the energy consumption in both sensing and
transmission stages for body sensors while guaranteeing the
reconstruction accuracy. And a BINF model is designed to
avoid body shielding effects in the third stage.

In the collection stage, each sensor periodically collects its
SeMs under SaMs and packs them for transmitting to the sink,
where the data type d = {A,B,C}, the sensor label p, the
belonging body label i, and the slot j are contained in the
preamble of the package. In this paper, we simply consider
that all body sensors can transmit their sensory data to the
sink within one hop range, and it is easy to extend the scale
by multi-hop routing or multi-coordinators. The GroupCoach
will require package retransmission if it is lost.

After aggregating all sensory data for slot j, the sink will
compensate the missing values by linear interpolation and
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reconstruct the SeMs to RMs according to SaMs. The faulty
movements for participator i on sensor p at slot j will be
detected and corrected with the comparison of AMs, where
results are fed back to the corresponding sensor for alerting
(e.g., by flashing the indicator lights or voice broadcasting).

In the rest of this section, we will introduce the detailed
design for each stage. Specifically, for the CS-related stage,
we modify the data reconstruction optimization problem with
the consideration of the spatial and temporal stabilities. And
we design a BINF diffusion model for accurate faulty data
detection and correction.

B. CS Based Data Collection and Reconstruction

CS is typically designed to compress the sensory data
to reduce the data transmission cost [27]. According to the
theory of CS, if a signal in a transform domain is sparse,
we can utilize an observation matrix which is not related
to the transformation matrix to project the high-dimensional
signals to a low-dimensional space. And the original signal
can be reconstructed from these few projections by solving an
optimization problem. In this subsection, we first analyze the
low-rankness of both motion and channel sensory data, and
then introduce the compressed data collection and a regularity
measured reconstruction in detail.

1) Low-rank Feature of Motion and Channel Sensing Data:
The low-rankness of motion sensory data exists in individual
sensors. At first, we take the accelerometer data as an example,
where the gyroscope data follow the same rules. On each
sensor, assuming there are B duplicated bars in a T -minute
song, the accelerometer data in each bar b (b ∈ [B]) can
be denoted as A(p, i, b) with the size of 3 × Tβ

B . Then
the data aggregated after the whole song is represented as
A(p, i, T ) = [A(p, i, b)]3×B . As shown in Fig. 2(b), the group
activities show obvious regularity and repetition among bars.
So we get rank(A(p, i, T )) = rank(A(p, i, b)), which proves
the low-rankness of the motion sensory data. We further prove
the low-rank feature of A(p, i, b) by Principal Component
Analysis (PCA) [28]. If the sensory data can be approximately
represented by its top-r singular values, it is proved to be low-
rank. Figure 2(a) shows the Cumulative Distribution Function
(CDF) of the top-r singular values evaluated on these sensory
data. It is intuitive that at most top-3 singular values occupy
over 98% of the total energy for A(p, i, b).

Additionally, the low-rankness of channel sensory data is
existed among multiple participators. Taking the first column
of C(N,T ), C(N, t1) = [c(1, t1), c(2, t1), . . . , c(N, t1)]T as
the analyzing target, if every participator is arranged in a fixed
position, then C(N, t1) can be represented by

C(N, t1) = [c(1, t1), c(1, t1) + ∆r1, . . . , c(1, t1) + ∆rN−1]T

(8)
If we denote the difference matrix as ∆R =
[∆r1,∆r2, . . . ,∆rN−1]T , then the C(N,T ) can be
elementarily transformed to a rank-2 matrix

C ′′(N, t1) = [c(1, t1),∆R, 0, · · · , 0]T (9)

According to the Fig. 2(c), ∆R also shows low-rank feature.
As proved by the PCA result in Fig. 2(a), top-5 singular values
occupy over 98% energy among multiple participators.

2) CS-based Data Reconstruction: According to the prob-
lem. 1, the target of this data reconstruction is to estimate
Â, B̂, Ĉ from SA, SB , SC and their corresponding SaMs.
Similarly, we only discuss the reconstruction of Â where
another two matrices following the same procedures. Due to
the sparsity of sensory data, we can describe the incomplete
Â as [27]:

Â = ÛĤV̂ = ÛĤ
1
2 · Ĥ 1

2 V̂ = LRT , (10)

where Ĥ is an r×r diagonal matrix with top-r singular values.
To find the optimal Â, we can solve the problem:

Objective: min rank(Â)

Subject to: Â ◦MA = SA.
(11)

This non-convex problem will be transformed according to
(10) as:

Objective: min(‖L‖2F + ‖R‖2F )
Subject to: (LRT ) ◦MA = SA.

(12)

By the relaxation of Lagrange multiplier and the introduction
of tuning parameter λ1, the optimization target is transformed
as:

min(
∥∥(LRT ) ◦MA − SA

∥∥2
F

+ λ1(‖L‖2F + ‖R‖2F )). (13)

3) Spatial and Temporal Stabilities Improvement: As dis-
cussed before, the sensory data has spatial and temporal
stabilities in group activities. We can measure such stabilities
into the optimization problem to enhance the reconstruction
accuracy. For motion sensory data, we denote the temporal
stability following the music bars by matrix Θ, then the
optimization target in (13) changed to:

min(
∥∥(LRT ) ◦MA − SA

∥∥2
F

+ λ1(‖L‖2F + ‖R‖2F ))

+λ2(
∥∥LRTΘ

∥∥2
F

),
(14)

where Θ is adaptive to the length of one bar of the music T
B

T
B︷ ︸︸ ︷

1 0 · · · −1
0 1 0 · · ·
...

...
...

. . .
0 0 · · · 1

0 · · · 0
−1 0 · · ·

...
...

...
0 · · · −1


3PN×3PN

, (15)

For channel sensory data, we denote the spatial stability on
the difference of RSSIs as ∆R then the optimization problem
is improved to:

min(
∥∥(LRT ) ◦MA − SA

∥∥2
F

+ λ1(‖L‖2F + ‖R‖2F ))

+λ2(
∥∥TLRT −∆R

∥∥2
F

),
(16)
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where T and ∆R are:

T =


1 −1 0 · · · 0
0 1 −1 · · · 0
...

...
...

. . .
...

0 0 0 1 −1


N×βT

(17)

∆R =


∆r(1, 1) ∆r(1, 2) · · · ∆r(1, βT )
∆r(2, 1) ∆r(2, 2) · · · ∆r(2, βT )

...
...

. . .
...

0 0 · · · 0


N×βT

.

(18)
The ∆r(i, t) in ∆R can be calculated from the location of the
participator, i.e., d = [d1, d2, . . . , dN ], and the body impact
factor, i.e., XB :

∆r(i, t) = 10η lg
d(i,t)

d(1,t)
+ (i− 1)XB (19)

The optimization problems (14, 16) can be represented as the
combination of functions related to L and R:

f(L,R) = f1(L,R) + f2(L,R) + f3(L,R), (20)

where
f1(L,R) =

∥∥(LRT ) ◦MA − SA
∥∥2
F
,

f2(L,R) = ‖L‖2F + ‖R‖2F ,
f3(L,R) =

∥∥LRTΘ
∥∥2
F
,

or f3(L,R) =
∥∥TLRT −∆R

∥∥2
F
.

(21)

We solve this optimization by alternatively fix L and R, which
is called Alternating Steepest Descent (ASD) algorithm [14],
[27] because of its low computationally complexity and high
reconstruction accuracy.

C. Faulty Data Detection and Correction
We consider that each group activity has its specific chore-

ography clearly describing the exact movements at each
timestamp, including the locations of participators and the
movement directions and distances w.r.t. the previous times-
tamp. According to this, we can acquire the task-specific
AMs theoretically. As mentioned in Problem. 2, the faulty
data detection and correction is performed by the comparison
between AMs and RMs. In this section, we will discuss the
details about AMs acquisition and BINF diffusion model for
faulty data detection and correction.

1) AMs Acquisition: The A
′

and B
′

can be easily collected
by deploying sensors on the body of a teacher, who can
provide a standard action demonstration. Here we mainly
discuss the acquisition of C

′
.

The log-normal shadow model is a general propagation
model to describe the mapping from the distance to the RSSI
value. In the group activity scenario, the channel attenuation
caused by body shielding introduces serious side-effects. So
under the distance d, we reformulate the RSSI value as [29]:

PL(d)(dB) = PL(d0) + 10η lg(
d

d0
) +XE +mXB

= E + 10η lg(
d

d0
) +mXB .

(22)

Chest

Thickness

Fig. 4. The practical measurement of parameters in log-normal shadow model.

TABLE II
THE MAPPING BETWEEN THICKNESS AND XB .

Thickness 10cm1 20cm 30cm 40cm
XB -5 -6 -17 -20

1 For system extension, we also measure the
thickness except chest, such as arm or leg.

As PL(d0) and XE are assumed to be fixed for the same
group target, which will be deducted in ∆R, so we combine
them to one factor E simply. The η is a path loss ratio, the
m is the number of body shielded ahead, and the XB is the
body shielding factor.

In our work, all above factors are experimentally measured
as follows. As shown in Fig. 4, we deploy one sensor on the
chest of 3 participators (P1, P2, and P3 in this figure) and let
them stand as illustrated (P1 and P2 in the same line with 1
meter gap, and P3 has a 2 meter gap with the sink). After
multiple measurements on these 3 nodes, we can get their
average RSSI values RP1 , RP2 , RP3 :

RP1 = E
RP2

= E + 10η lg 2 +XB

RP3
= E + 10η lg 2

⇒


E = RP1

XB = RP2
−RP3

η =
RP3
−RP1

10 lg 2
(23)

As indicated in (23), the RP1
is considered as E. After fixing

E, we can calculate η and XB by formulation transformation.
Practically, the different thickness of the body part leads to

different XB . Here we put the sensor behind the chest and
measure the thickness as illustrated in Fig. 4(b). Volunteers
are required to stand in the position of P1 one by one to
collect their corresponding RSSI values. The representative
mapping between thickness to XB is summarized in Table. II.
The calculation in our work is based on these measurements.

Build the coordination system like Fig. 5, we assume that
the initial coordination of each body sensor is pre-known. So
the C ′ can be calculated according to the position arrangement
in the group activity by (22) and Table. II.

2) BINF Diffusion Model: In the practical faulty movement
detection, two challenges should be dealt with:

1) The movements are conducted sequentially, where the
correction on the faulty movement at the timestamp t is
given w.r.t the previous movement at t−1. If the previous
movement is also a faulty movement, the following
results are inaccurate also.
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Fig. 5. The problem illustration to propose NF diffusion model.

2) The mapping of the RSSI to the distance is shielding-
aware. The different RSSI values between Ĉ and C

′
may

not be caused by the faulty movement of participators,
while the shielding of faulty dancers in their front can be
another reason.

For a better understanding of the second challenge, we draw
a simplified diagram in Fig. 5. The dancer D3 is the nearest
faulty dancer to the sink (in the fusion centre). She mistakenly
moves away from her standardized location (D3) to her real
location (D

′

3). Then both the participators D2 and D1 has a
new shielding (m + 1), resulting in a decreased RSSI value
compared with AMs, even they are in correct locations.

To cope with these two challenges, we design a BINF
diffusion model for accurate faulty movement detection and
calculation. The core idea of the NF is to diffusely detect the
faulty dancer from the nearest one (no shielding) to farther one,
where the shielding number is determined by the confirmed
locations of frontal dancers. And their motion corrections are
calculated from the starting time to the end. The detailed BINF
based algorithm is shown in Algorithm. 1.

Firstly, the Ĉ is sorted with a decreasing order on rows (line
1-4). From the nearest dancers to farther ones, the algorithm
detects faulty locations by the comparisons between Ĉ(p, i, j)
with C

′
(p, i, j) (i ∈ [R]). If the difference is not bigger

than the threshold δ1, the location of the dancer is true,
and then the algorithm starts checking their motion status
(line 5-7). Otherwise, the algorithm will update AMs with
the consideration of new m and XB (line 9-11), and record
location correction in C̃ (line 26). The motion checking is
according to the difference between Â, B̂ and A

′
, B

′
(line 14-

24). And the motion correction is to assign the difference to
the CMs (line 28-30). In this algorithm, line 10 and 11 is the
implementation of BINF. Under the new location of the nearer
dancers, the new number of people shielded in front (m) can
be considered for updated AMs, which can avoid the body
shielding misjudgement.

V. EVALUATION

In this section, we mainly evaluate the QoS of GroupCoach
in terms of data reconstruction accuracy, faulty detection
accuracy, and energy consumption.

Algorithm 1 BINF-based algorithm

Input: The RMs Â, B̂, Ĉ and their sizes P,N, T ;
The AMs A

′
, B

′
, C

′
, the initial coordination of each

sensor node (x(p, i, 0), y(p, i, 0), z(p, i, 0)).
Output: The CMs Ã, B̃.
1: for i = 1 to N do
2: Sort Ĉ with a descending order on the average value of

each row.
3: Correspondingly rearrange C

′
by rows.

4: end for
5: for i = 1 to N ; j = 1 to T do
6: if Ĉ(i, j)− C ′

(i, j) ≤ δ1 then
7: MotionChecking(0)
8: else
9: MotionChecking(i, j)

10: Calculate d̂(i, j) according to Ĉ(i, j) using (22)
11: Update C

′
(i : N, j) based on d̂(i, j) with the con-

sideration of m,XB .
12: end if
13: end for
14: MotionChecking(index,j):
15: if index==0 then
16: for p = 1 to PN ; i = p+ 3; j = 1 to T ; do
17: if Â(p, i, j) − A

′
(p, i, j) > δ2 or B̂(p, i, j) −

B
′
(p, i, j) > δ3 then

18: MotionCorrect(p, i, j)
19: else
20: Ã(p, i, j) = 0
21: B̃(p, i, j) = 0
22: C̃(i, j) = 0
23: end if
24: end for
25: else
26: C̃(index, j) = C

′
(index, j)

27: end if
28: MotionCorrect(p, i, j):
29: Ã(p, i, j) = Â(p, i, j)−A′

(p, i, j)
30: B̃(p, i, j) = B̂(p, i, j)−B′

(p, i, j)

A. Evaluation settings

To demonstrate the feasibility of GroupCoach, we have
implemented a prototype deployed on a group of 3 activity
participators who have similar heights but different weights for
evaluation. Their positions are arranged the same as Fig. 4. We
design a series of simple movements for them to perform: raise
the left arm as high as the shoulder, raise the right arm, raise
the left feet to 30 cm, put down the left feet, raise the right
feet to 30 cm, put down the right feet, put down the right arm,
and finally put down the left arm. Each step takes 3 seconds
and the volunteers are required to perform this group of
activity synchronously. The first volunteer should perform as
organized; the second volunteer is required to perform wrong
movements but keep right locations; and the third volunteer
should perform wrong movements with wrong locations also.
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The timestamps of wrong motions and locations are pre-
known. Then we successfully collect the real-world motion
and channel sensing data with faulty records for 3 participators
in 800 seconds with a constant rate of 60Hz. To extendedly
evaluate our system, we emulate sensory data of another 6
people from these records by Simulink libraries in Matlab. The
motion sensory data of these 6 people are generated same with
the first volunteer, and the channel sensory data is calculated
by (22) according to the location arrangement in Fig. 5 (1-
meter gap with adjacent volunteer). So finally we have sensory
data for 9 participators in 800 seconds.

On each body, there are 10 off-the-shelf smartwatches
equipped with IMUs (i.e., accelerometer and gyroscope), wire-
less receiver and transmitter. We write an Android program to
realize the compressed data collection and transmission, based
on Android Studio 3.0.1, where the compile SDK version is
25 and the build tool version is 25.0.3. The sink continuously
broadcast the 20dBm Wi-Fi signals for RSSI sensing. Besides,
the data reconstruction is implemented by an R2014a Matlab
code1 on a Thinkpad Carbon X1 laptop with Intel Core i5-
6200U CPU 2.3GHz and no GPU supported.

To dilute the effect of the transient signal, the gravitational
part in accelerometer values is separated by a Butterworth
low-pass filter [30]. Moreover, we apply the high-pass filter
on gyroscope signals to suppress the drifting problem on data
integral. To ensure the computational correctness, we keep the
low-pass and high-pass filter applied here are complementary
to 1. To evaluate the effect of missing values, we define
a missing ratio θ to manually create samples with missing
values. The data compression ratio α in evaluation can be
selected from [50, 60, 70, 80, 90].

Four indexes are used to measure the performance of
GroupCoach:

1) Compression Ratio (CR): The CR describe the de-
creased ratio between the transmitted quantity (QT ) and
the raw data quantity (QR):

CR =
QR −QT

QR
× 100% (24)

2) Mean Absolute Error (MAE): The performance of data
reconstruction accuracy is measured by MAE, defined as:

err =
1

3× P ×N × βτ
∑

p,i,j

√∣∣∣A− Â∣∣∣2. (25)

3) Precision and Recall: The performance of faulty move-
ment detection and correction accuracy is judged by these
two indexes:

Precision =
#TP

#TP + #FP
, (26)

Recall =
#TP

#TP + #FN
, (27)

where #TP , #FP and #FN represent True Positive,
False Positive, and False Negative, respectively.

1The data reconstruction Matlab code is open-sourced in
http://www.cs.sjtu.edu.cn/∼linghe.kong/GroupCoach.rar

TABLE III
THE MAE OF RECONSTRUCTION METHODS WITH θ = 0%

α(%) 50 60 70 80 90
LP 0.3918 0.4852 0.7036 1.1169 1.6022
TR 1.4414 1.4821 1.5100 1.6521 1.7001

ASD 2.9565 3.1260 3.3715 3.6242 4.1115
GroupCoach 3.83e−5 4.4e−5 5.49e−5 0.0210 0.0031

4) Processing Latency TP : The processing latency is com-
posed by transmission (Tt) and calculation (Tc) latencies,
which can be represented as: TP = Tt + Tc. The
measurement of TP is from the starting timestamp of each
movement to the receiving of its corresponding feedback.

B. Evaluation results

We first evaluate the sensory data reconstruction accu-
racy. Three benchmarks are chosen for comparison:

1) Linear interpolation (LP): We choose the simplest nearest
neighbor interpolation algorithm for linear reconstruction,
which leverages the left nearest integer as the estimated
value for reconstruction [12].

2) Tensor based reconstruction (TR): After transforming
the SeMs and SaMs from a 2-dimensional vector to 3-
dimensional tensor A,B, and C with the size of N ×
P × βτ and P × βτ , we apply MDTSC [13] for their
reconstruction.

3) ASD without regularity consideration (ASD): This bench-
mark will reconstruct the sensory data following the
original optimization process in [14], whose optimization
target is (13).

The compression ratio α varies from 50% to 90%, when
α = 100% indicates no compression and not related to
CS-based evaluation. Experimentally, the iteration time for
data reconstruction is set to 300, and other indexes are
λ1 = 0.001, λ2 = 1.13, which can mostly result in a better
accuracy with lower processing latency. The accuracies of
data reconstruction for four methods are implied by MAE
summarized in Table. III. It is obvious that the accuracy of
data reconstruction in GroupCoach outperforms than other
methods. It highly exceeds the ASD method with its spatial
and temporal optimization. Similarly, the TR is also better
than ASD, since it can preserve the intrinsic structure of
the multi-dimensional data, that is, the spatial and temporal
relationships among motion or channel sensing data. Besides,
with the increasing of the compression ratio, the accuracy of
data reconstruction is decreasing for all methods. It is worth to
note that for reconstruction in GroupCoach, the reconstruction
error jumps up to a 103 degree, indicating a threshold of 70%
for data compression in our scenario.

We then evaluate the effect of data missing during transmis-
sion for reconstruction. The missing ratio θ is controlled to 0%,
20%, and 40%. According to Fig. 6, the increase of θ leads
to the decrease of reconstruction accuracies for all methods.
Since the LP is relatively robust to deal with missing values,
we further evaluate the possibility for LP to compensate for
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Fig. 7. Precision and recall of faulty data detection in the fusion centre

missing values before reconstruction. However, compared with
direct reconstruction in GroupCoach, the linear interpolation
before reconstruction (LP+GC in the figure) introduces error
accumulation, although the result is better than the LP-only
method. It also indicates the robustness of reconstruction in
GroupCoach to deal with missing values.

Next, we evaluate the accuracy of faulty movement de-
tection and correction. Here the GroupCoach is compared
with two benchmarks:

1) Baseline (Base): This basic method is to directly compare
the difference between RMs and AMs without BINF
model.

2) Time Sequence (TS): As the motion and channel sensory
data are a series of data points indexed in time order.
This benchmark utilize window-based time-series outlier
detection [31].

3) NF: This method utilize the near-to-far diffusion model
without the consideration of the body impact factor XB .

The precision and recall are shown in Fig. 7(a) and (b)
respectively. Considering the faulty detection and correction
is performed on RMs, the reconstruction error in RMs will be
accumulated to detection error, so the detection accuracy can
not reach to 100%. Note that the correction is performed after
detection, and calculated by the comparison with AMs, so we
regard the accuracy for corrections as same as the accuracy
for detection. As indicated in these figures, the increase of the
compression ratio α leads to the decrease of the detection
and correction accuracy for all four methods. The BINF
model-based algorithm in GroupCoach outperforms with high
precision and recall values, by its NF model and body impact
factor consideration.

As mentioned in Section. II-B, the most power consumption
stage is in data transmission. So we evaluate the degree of
energy consumptions by the transmission quantity of the data.
Due to the utilization of CS-based techniques, the transmission
quantity in GroupCoach is directly related to the compression
ratio α. According to the results shown in Table. III, when
α = 70%, MSE = 5.49e−5 for GroupCoach. It indicates
that a 70% compression ratio can still acquire a satisfactory
reconstruction performance. It fulfills the QoS requirements
for GroupCoach: less transmission with high reconstruction
accuracy.

TABLE IV
CALCULATION LATENCY FOR DIFFERENT METHODS WITH α = 70%

Reconstruction Detection & Correction
LP 1.16e−4 Base 0.17
TR 3.2 TS 2.06

ASD 0.1943 NF 0.95
GC 0.866 BINF 0.97

Another important factor in QoS evaluation is the process-
ing latency of this system. We set the collection time slot
τ = 4s based on the rhythm of the music, so the processing
latency is required to be less than 4 seconds. According to
the discussion above, we set α = 70% for the processing
evaluation. The specific latencies are summarized in Table. IV.
The combination of reconstruction in GroupCoach and BINF
has 1.836s latency in total, which fulfills the QoS requirements
in group activity monitoring. So the feedback can reach to
dancers before the next sensory data transmission. Although
the combination between LP and ASD with Base and NF can
also satisfy this requirement, their accuracies are relatively
lower than GroupCoach.

C. Discussion

The design of GroupCoach in this paper has strong as-
sumptions to simulate the simplified monitoring environment,
while in practice, there are more complicated scenarios. Firstly,
we consider that all group participators perform in the same
movements. However, there are rich formats and arrangements
in group activities, which separately divide the group into sub-
groups to assign different movements or locations. Such group
division will not break the low-rank feature of the sensory data
and the CS techniques are still feasible to be applied to it.
Secondly, the environments of group activities can be outdoor
or a grand stage, which have unfixed environmental factor
(E in (22)). To be compatible with these environments, the
function (22) should be adaptively updated. It can be realized
by designing a feedback mechanism, where the accuracy of
the correction is also evaluated. If the correction suggestion is
wrong, then the system will adjust these factors accordingly.

The computational complexity of BINF based algorithm is
O(NT ), which is enlarged with the scaling of the activity
group and the duration of the monitoring. We believe that with
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the help of a more powerful fusion centre (GPU supported),
it can provide near real-time feedback for participators. A
shining tip or a voice prompt mechanism can be designed as
the feedback on-body sensors to alert the faulty participators.

VI. CONCLUSION

With the increasing popularity of group activity, in this pa-
per, we propose GroupCoach, a CS-based system to accurately
and energy-efficiently monitor group participators, which can
provide the corresponding correction suggestions on faulty
movements. The salient QoS performance of GroupCoach
explores the potential of the appliance of CS techniques into
WBAN, which will be a promising direction to benefit our
daily life.

Several future works can be considered to improve this
research work:

1) We plan to extend GroupCoach into the outdoor environ-
ment with more complicated effects on channel sensing
data. As discussed in Section V-C, a feedback mechanism
can be additionally designed into this system to adaptively
update the environmental factors.

2) We expect to enlarge the scale of GroupCoach and break
the limits of one-hop communication. A proper multi-
hop routing protocol is required to be designed to avoid
missing data [32].
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