

GroupCoach: Compressed Sensing Based **Group Activity Monitoring and Correction** Yutong Liu, Linghe Kong, Fan Wu, Guihai Chen IWQoS 2020

5

Conclusion & Future Work

Background: Group Activity

Background: Group Activity

18 dancers with 3 coaches and 2 directors Their grand scale presents beauty, but with the hardness of rehearsal.

Background: Multi-people Motion Tracking

Vision-based motion tracking

- Tools: cameras, depth sensors, infrared projectors.
- Example: Microsoft Kinect
- Limitations: Pre-trained model required, computationally expensive for multiple targets.

Sensor-based motion tracking

- Fibre-optic, joint bend body sensors (wired): accurate transmission with limited motion range and speed
- Wireless body area network (WBAN): flexible transmission with light-weight deployment

Background: Multi-people Motion Tracking

Vision-based motion tracking

- Tools: cameras, depth sensors, infrared projectors.
- Example: Microsoft Kinect
- Limitations: Pre-trained model required, computationally expensive for multiple targets.

Sensor-based motion tracking

- Fibre-optic, joint bend body sensors (wired): accurate transmission with limited motion range and speed
- Wireless body area network (WBAN): flexible transmission with light-weight deployment

Background: WBAN Scheme

Group Activity Participator

Fusion Center

Acc & Gyro: Motion accelerations and directions

RSSI: Location estimation

Background: QoS Challenges

- Less consumption
 - Reason: Limited sensor power supply
 - Strategy: Energy-efficient sensing strategy
- Higher accuracy
 - Reason: Transmission interferences
 - Strategy: Optimized data reconstruction
- Lower latency
 - Reason: Dynamic activity monitoring environment
 - Strategy: Lower computational complexity and lower transmission amount

Background

5

Conclusion & Future Work

- Inertial sensory data (Temporal)
 - Values are replicated among bars of background music.

- Channel sensory data (Spatial)
 - Value differences between adjacent participants are fixed w.r.t. time, but related to their relative locations.

Motivation: Low Rankness

- Inertial sensory data (Temporal)
 - Values are replicated among bars of background music.
 - The rank of the whole song equals to the rank of one bar.
- Channel sensory data (Spatial)
 - Value differences between adjacent participants are fixed w.r.t. time, but related to their relative locations.
 - The rank of the whole team can be transformed to the rank of their relative locations.

Background

5

Conclusion & Future Work

Design Overview

Design: CS-based Data Reconstruction

• Under SaMs, the sensors transmit SeMs to the fusion center:

$$A \circ M_A = S_A$$

• The problem of data reconstruction is:

Given SeMs and SaMs, the optimal RMs are considered to have the minimum difference with OMs, formulated as:

Objective:
$$\min \left\| A - \hat{A} \right\|_F$$

Subject to: $S_A, M_A,$

 Due to the sparsity of sensory data, the RMs can be diagonally transformed as:

$$\hat{A} = \hat{U}\hat{H}\hat{V} = \hat{U}\hat{H}^{\frac{1}{2}} \cdot \hat{H}^{\frac{1}{2}}\hat{V} = LR^{T}$$

Design: CS-based Data Reconstruction

• Under SaMs, the sensors transmit SeMs to the fusion center:

$$A \circ M_A = S_A$$

• The problem of data reconstruction is:

Given SeMs and SaMs, the optimal RMs are considered to have minimum difference with OMs, formulated as:

Objective:
$$\min \left\| A - \hat{A} \right\|_F$$
 Objective: $\min(\left\| L \right\|_F^2 + \left\| R \right\|_F^2)$
Subject to: $S_A, M_A,$ Subject to: $(LR^T) \circ M_A = S_A.$

 Due to the sparsity of sensory data, the RMs can be diagonal transformed as:

$$\hat{A} = \hat{U}\hat{H}\hat{V} = \hat{U}\hat{H}^{\frac{1}{2}} \cdot \hat{H}^{\frac{1}{2}}\hat{V} = LR^{T}$$

Design: CS-based Data Reconstruction

• Under SaMs, the sensors transmit SeMs to the fusion center:

$$A \circ M_A = S_A$$

• The problem of data reconstruction is:

Given SeMs and SaMs, the optimal RMs are considered to have minimum difference with OMs, formulated as:

Objective:
$$\min \left\| A - \hat{A} \right\|_F$$
 Objective: $\min(\left\| L \right\|_F^2 + \left\| R \right\|_F^2)$
Subject to: $S_A, M_A,$ Subject to: $(LR^T) \circ M_A = S_A.$

- Using the relaxation of Lagrange multiplier and the tuning parameter λ_1 , the optimization target becomes:

$$\min(\|(LR^T) \circ M_A - S_A\|_F^2 + \lambda_1(\|L\|_F^2 + \|R\|_F^2)).$$

- Inertial sensory data (Temporal)
 - Values are replicated among bars of background music.

Channel sensory data (Spatial)

 Value differences between adjacent participants are fixed w.r.t. time, but related to their relative locations.

Design: Stabilities-Driven Data Reconstruction

• When we measure the temporal stability by matrix Θ :

$$\begin{bmatrix} \frac{T}{B} & & & \\ 1 & 0 & \cdots & -1 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & -1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 & \cdots & -1 \\ & & & & & & \end{bmatrix}_{3PN \times 3PN}$$

The optimization target for inertial sensory data becomes:

$$\min(\|(LR^T) \circ M_A - S_A\|_F^2 + \lambda_1(\|L\|_F^2 + \|R\|_F^2)) + \lambda_2(\|LR^T\Theta\|_F^2),$$

Design: Stabilities-Driven Data Reconstruction

• When we measure the spatial stability by matrix T and ΔR :

 $T = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ 0 & 1 & -1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}_{N \times \beta T} \Delta R = \begin{bmatrix} \Delta r(1,1) & \Delta r(1,2) & \cdots & \Delta r(1,\beta T) \\ \Delta r(2,1) & \Delta r(2,2) & \cdots & \Delta r(2,\beta T) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}_{N \times \beta T}$

The optimization target for channel sensory data becomes:

$$\min(\|(LR^{T}) \circ M_{A} - S_{A}\|_{F}^{2} + \lambda_{1}(\|L\|_{F}^{2} + \|R\|_{F}^{2})) + \lambda_{2}(\|TLR^{T} - \Delta R\|_{F}^{2}),$$

Design: Body Impact Factor

- The mapping between RSSI value and the distance d

[log-normal shadow model]:

$$PL(d)(dB) = \overline{PL}(d_0) + 10\eta \lg(\frac{d}{d_0}) + X_E + mX_B$$
$$= E + 10\eta \lg(\frac{d}{d_0}) + mX_B.$$

$$\begin{aligned} \overline{\frac{R_{P_1}}{R_{P_2}}} &= E \\ \overline{\frac{R_{P_2}}{R_{P_3}}} &= E + 10\eta \lg 2 + X_B \\ \overline{R_{P_3}} &= E + 10\eta \lg 2 \end{aligned} \Rightarrow \begin{cases} E = \overline{R_{P_1}} \\ X_B = \overline{R_{P_2}} - \overline{R_{P_3}} \\ \eta = \frac{\overline{R_{P_3}} - \overline{R_{P_1}}}{10 \lg 2} \end{cases} \end{aligned}$$

Thickness	10cm^1	20cm	30cm	40cm
X_B	-5	-6	-17	-20

For system extension, we also measure the thickness except chest, such as arm or leg.

Design: Body Impacted Near-to-Far (BINF) Diffusion Model

Challenge:

New shielding situation leads to inaccurate faulty detection.

Design: Body Impacted Near-to-Far (BINF) Diffusion Model

• Solution:

Near to far calculation, and update AMs step-by-step.

5

Conclusion & Future Work

Evaluation settings

- Emulation data collection:
 - 3 volunteers with required motions
 [1 totally right, 1 motion wrong, 1 both motion and location wrong]
 - Emulated to 9 people with arranged locations and right motions

- 9 off-the-shelf smartwatches on each body with Android data collection program
- Matlab code for data reconstruction on Thinkpad Carbon X1 laptop
 - http://www.cs.sjtu.edu.cn/~linghe.kong/GroupCoach.rar

Recall: QoS Challenges

- Less consumption
 - Reason: Limited sensor power supply
 - Strategy: Energy-efficient sensing strategy
- Higher accuracy
 - Reason: Transmission interferences
 - Strategy: Optimized data reconstruction
- Lower latency
 - Reason: Dynamic activity monitoring environment
 - Strategy: Lower computational complexity and lower transmission amount

Evaluation results: Accuracy for reconstruction

$\alpha(\%)$	50	60	70	80	90
LP	0.3918	0.4852	0.7036	1.1169	1.6022
TR	1.4414	1.4821	1.5100	1.6521	1.7001
ASD	2.9565	3.1260	3.3715	3.6242	4.1115
GroupCoach	$3.83e^{-5}$	$4.4e^{-5}$	$5.49e^{-5}$	0.0210	0.0031

The **Mean Absolute Error (MAE)** for linear interpolation (LP), tensor based reconstruction (TR), ASD without stability consideration (ASD), and reconstruction in GroupCoach, with different compression ratio α .

The accuracy comparison with different missing ratio θ .

Evaluation results: Accuracy for detection & Latency

The **Precision & Recall** for Baseline (Base), Time Sequence (TS), NF, and BINF in GroupCoach, with different compression ratio α .

Reconstruction		Detection & Correction	
LP	$1.16e^{-4}$	Base	0.17
TR	3.2	TS	2.06
ASD	0.1943	NF	0.95
GC	0.866	BINF	0.97

5 Conclusion & Future Work

Conclusion & Future Work

Conclusion

- The exploration of the spatial and temporal stabilities in group activities, low-rankness of sensory data, making the appliance of CS into group activities possible.
- A new BINF diffusion model to solve channel attenuation problem caused by body shielding.
- A comprehensive CS-based group activity monitoring and correction system.
- Future Work
 - Outdoor extension with changed environment factor
 - Detection scale extension with multi-hop transmission

Thanks for listening

isabelleliu@sjtu.edu.cn