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Abstract—Mobile devices equipped with rich sensors, such as
smartphones, watches, or vehicles, have been pervasively used
all around the world. Their high penetration and powerful sens-
ing ability enable them to carry out heavy sensing projects by
splitting tasks into small pieces. Since ordinary participants can
simply employ their mobile devices to sense and upload the
required data, the mobile crowdsensing (MCS) technology is gain-
ing great popularity. However, there are still some challenges in
building a complete and sustainable MCS system. Researchers
these years have proposed plenty of strategies to solve these chal-
lenges in order to improve the MCS technology. In this survey,
we aim to provide a comprehensive literature review on recent
advances in MCS. Oriented to the data flowing in MCS projects,
we survey researches from five popular aspects in three stages:
1) incentive mechanism; 2) security protection; and 3) privacy
preserving, together with resource optimization in the data col-
lection stage; the data analysis stage; and the data application
stage. To provide the convenience to interested researchers, some
available testbeds, simulators, and commercial service platforms
are also summarized in this survey. As the MCS technology still
needs further development, we discuss some lessons learned from
introduced researches as well as future research directions at last.

Index Terms—Mobile crowdsensing, incentive mechanism, pri-
vacy preserving, resource optimization, multimodal data mining.

I. INTRODUCTION

MOBILE devices nowadays have been equipped with
various sensors including accelerometers, gyroscopes,

contact image sensors, and so on. According to the statistics
of International Telecommunications Union (ITU) in 2018 [1],
global mobile-cellular telephone subscriptions have grown
more than 30% in the last five years and are expected to
reach 8 billion by the end of 2018. Furthermore, there are
even more mobile-cellular subscriptions than people on the
planet, where every 100 inhabitants have around 110 sub-
scriptions [1]. Inspired by such popularity of mobile devices,
MCS is proposed [2] to realize more flexible and efficient data
acquisition, analysis, and application than fixed wireless sen-
sor network (WSN). The formal definition of MCS can be
expressed as [3]:

MCS is a new sensing paradigm that empowers ordinary
citizens to contribute data sensed or generated from their
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Fig. 1. The illustration of MCS structure.

mobile devices, aggregates and fuses the data in the cloud
for crowd intelligence extraction and human-centric service
delivery.

As its name implies, MCS has three main characteristics:
• “Mobile”: The participators and devices are in moving

status subjectively, so the coverage of participators and
the quality of sensing data are required to be controlled.

• “Crowd”: The large group of individuals having mobile
devices are capable of participating in the sensing
projects. But different trajectories or preferences of par-
ticipators will lead to the data heterogeneity, such as the
uneven distribution of sensing data.

• “Sensing”: Participators are mostly required to execute
some simple sensing tasks without massive computations.

Take city noise monitoring as an example. It is intuitive for
relevant departments to build special infrastructures on noise
detection, but it will cost a large amount of money and time
for construction, usage, and maintenance. Benefit from MCS,
users who are willing to participate in this monitoring project
will employ their mobile devices (e.g., smartphones, wear-
able devices, smart vehicles, etc.) to record the audio clips
in their locations, for further noise analysis. These records
together with their GPS information will be uploaded to the
platform and finally sent to requestors (e.g., agencies responsi-
ble for noise monitoring). From the requestors’ perspective, the
costs in MCS are lower than traditional facility constructions
and maintenances, which include the rewards for participators,
charges for platform services, transmission consumptions, and
so on, deriving MCS as a meaningful research and application
direction.

From the above-mentioned example, the typical MCS
systems are consisted of three main components: participa-
tors, platform, and requestors. While in some scenarios the
participators and requestors are the same entity (e.g., the
requestors can also go to collect data), in this paper we discuss
them separately since their related service types and problems
are different. Their relationships are illustrated in Figure 1.
Requestors will initiate sensing requests from either mobile
devices or computers, and provide corresponding constraints
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Fig. 2. The framework of data-oriented MCS survey.

including budgets and coverage requirements forwarded to
the sensing platform. The platform side is responsible for
assigning tasks and publishing rewards to a suitable subset
of mobile device users, with the consideration of constraints.
Participators will upload the sensed data after accepting their
sensing tasks, which will be collected, stored, processed by the
sensing platform and finally returned to requestors. This col-
laborative scheme builds the connection between industries,
governments, organizations and ordinary people. The united
environment it establishes plays an important role in support-
ing sustainable development goals, including economic, social
and environmental requirements [4].

However, to build a sustainable and complete MCS system,
several problems oriented to data in MCS waiting to be solved.
In the collection of data, how to recruit enough participa-
tors? How to preserve their privacy and the security of their
sensed data? And how to achieve best distribution and data
quality under budget and coverage limits, together with sev-
eral sustainable issues [5]? In the analysis of collected data,
how to detect and correct missing or faulty data? And how
to dig out the inner connection in multi-modal data? In the
data applications, how to apply observations from data to
improve our life quality? Correspondingly, in this survey,
we discuss five main research aspects belonging to three
data-oriented stages for MCS: incentive mechanism, security
protection and privacy preserving, and resource optimization
in the MCS data collection stage; the MCS data analysis
stage; and the MCS application stage. Some existing simula-
tion methods, testbeds, and commercial service platforms are
summarized next. The organization of this survey is shown in
Figure 2.

Since MCS has been researched in the past few years, there
have been several survey papers discussing this area. One
kind of surveys concentrates on the single aspect of MCS
in detail: designs of incentive mechanisms [6], [7], strategies
for privacy preserving and security [8]–[10], plans in resource

optimization [11], or discussion on quality of information
(QoI) [12]. Another kind of surveys comprehensively discusses
MCS in different aspects [2], [3]. Ganti et al. [2] summarize
the current state and future direction of MCS from a global
view, while it only gives the brief introduction on the chal-
lenges and solutions where technology details are missed in
this paper. Guo et al. [3] survey on the most related topic
with us. On the one hand, we survey on different views of
MCS. This survey is driven by the view of human intelligence,
where the motivations of MCS projects are human participa-
tion, fusion and extraction of human-machine intelligence, and
human-powered applications. But our paper is oriented to the
data flowing in MCS projects, introduced from data collection,
analysis, and application stages. On the other hand, plenti-
ful advances have been made during the recent three years.
The further survey on these related work is meaningful in our
paper. The summarization on advances and differences of these
survey papers are shown in Table I.

Specifically, the main contributions of our paper can be
summarized as:

• This survey comprehensively considers the key tech-
niques oriented to the data in MCS, which can give the
global view on the main research aspects in MCS to
readers.

• This survey selects plenty of related papers to present the
recent advances in MCS research. As we systematically
introduce and compare them, readers can clearly have a
preliminary understanding of each aspect.

• This survey summarizes some existed simulation methods
or testbeds, together with learned lessons, future research
directions and potential solutions, which can inspire new
or skillful researchers in MCS area to design and realize
their own research topics.

The rest of this paper is organized as follows. Section II
clears the relationships between MCS with other similar
research areas, and summarizes key design considerations
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TABLE I
THE COMPARISONS OF EXISTED SURVEY PAPERS

in MCS. Sections III–VII respectively introduce the existed
researches on incentive mechanism, security protection and
privacy preserving, resource optimization, analysis techniques,
and applications in MCS. Section VIII further lists state-of-
the-art simulators, testbeds, and commercial service platforms
served for MCS projects. Finally, Section IX concludes the
paper and discusses the lessons learned from the mentioned
researches and some possible future research directions.

II. PRELIMINARIES

In this section, we first clear the interactions between MCS
with other similar research areas, and then summarize several
factors in designing MCS system. This section can be regarded
as a complementary background for MCS, which helps readers
to understand the following sections easily.

A. Interactions With Similar Areas

MCS has a lot of similarities with another five research
areas: the Internet of Things (IoT), cloud computing, edge
computing, WSN, and crowdsourcing. The investigations
between their interactions and differences will be presented
in this subsection.

Firstly, the IoT is the network of physical devices, vehicles,
home appliances, and other items embedded with electronics,
softwares, sensors, and actuators. The connections between
them enables the integration of the physical world into cyber
systems [13], [14]. As the mobile devices with sensors in
crowdsensing also connect with each other and exchange data,
MCS is envisioned to co-exist with the IoT paradigm. It is
proved to be a win-win strategy [15], where the potential
synergy between the embedded IoT devices and the com-
bined network support the MCS techniques, and reversely,
the deep fusion of these embedded segments in MCS brings
along the complementary benefits for IoT field without addi-
tional cost [16]. For example, the analysis of road sensory
information collected from MCS through vehicle networks
is beneficial for providing safer and more reliable vehicular
transportation [17].

To overcome the computation, memory, and energy lim-
itations, mobile cloud computing provides the possibility
for MCS to consume various cloud resources via wireless
networks. That is, the data analytic, storage and real-time
processing are performed in the cloud, which is regarded as
a cloud-centric IoT solution [18]. Additionally, since mobile
devices are embedded with various sensors and associated with

human users, they can collectively form a mobile cloud to
provide pervasive services [19]. Thus, MCS is considered as
a cloud-inspired model to solve large-scale problems, which
follows “sensing as a service (S2aaS)” [20] and “sensing
instruments as a service (SIaaS)” [21] models. One of the MCS
schemes introduced in Section I is a typical S2aaS model,
where a mobile device user can be not only a cloud (service)
user who is a requestor of sensing tasks but also a partici-
pator who fulfills sensing tasks [20]. Besides, as described in
SIaaS model, the cloud provider (platform) is not the owner of
shared resources but can share and manage participators’ sens-
ing instruments using cloud infrastructure through a virtualized
system [21].

Although it is proved that assigning all computational tasks
to the cloud is efficient for data analyzing according to its
outstanding computing capability, the limitations of speed
and bandwidth for data transmission have become the bot-
tleneck for this cloud-centric scheme [22]. To deal with it,
mobile edge computing (MEC) tends to transfer network func-
tions, contents and resources closer to mobile users [23]. As
one of the edge computing scheme, fog computing in wire-
less networks enables IoT applications running at the edge
side. A multi-tiered architecture for fog computing is com-
posed of three layers: the device layer accumulating all IoT
devices, the fog layer containing all intermediate servers, and
the cloud layer with cloud servers. Benefit from this hier-
archical structure, MCS tasks can be assigned according to
specific application requirements (i.e., latency and cost con-
straints) and conditions of each layer (i.e., bandwidth, battery,
or computational capability). In general, the data collection is
mainly assigned to edge devices, while the data analysis can
be pre-processed on sub-servers, where redundancy can be
filtered and near-optimal data can be extracted before trans-
mitting to the final cloud servers. The transmission resources
can be saved and the computational burden of cloud servers
can also be relieved. In addition to this provisioning benefits,
human-enabled mobile MEC (M2EC) shows the possibility of
the integration between MEC and MCS, where the efficient
resource usage and perceived service quality can be realized
by their joint exploitation [24].

As one of the most important elements in the IoT paradigm,
WSN has been used to carry out sensing tasks. It collects
data from the environment and transmits them to the sink
nodes [25]. But it requires specifically designed sensor nodes
and network architectures for certain sensing tasks, where the
limited node coverage, high installation and maintenance fee,
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and the lack of scalability make it difficult to be extended [26].
Different from traditional WSNs deployed with dedicated sta-
tionary sensors, MCS is powered by sensor-embedded mobile
devices. As a result, MCS is capable to execute flexible
sensing tasks by enlarging the sensing scale and coverage
granularity [27].

Coined in 2005 by Howe [28], the term “crowdsourcing”
is a portmanteau of crowd and outsourcing. The core idea
of crowdsourcing is to divide work between participators to
achieve a cumulative result. The crowd wisdom from large,
relatively open and rapidly-evolving groups of Internet users
can be applied to find a creative idea or satisfactory solution
to solve the problem, or achieve some financial or research
targets [29]. Inspired by crowdsourcing, crowdsensing specif-
ically aims at the sensing targets, where the highly-distributed
mobile devices from ordinary users can be served as sen-
sors to collect and upload data. In other words, the mobile
crowdsourcing used in sensing project [30]–[33] is equal to
MCS.

B. Matrix

This subsection introduces several main matrices needed
to be considered in MCS design. Note that the selections on
these matrices are according to the targeting problems, where
five technical aspects in the following sections have different
concerns. Both their general meanings as well as varied expla-
nations in different technical aspects will be introduced in this
subsection.

1) QoI: The QoI represents the quality (or trustworthiness)
of sensed data, which will be affected by two factors: (i) out-
right device malfunction, transmission error, or low sensory
accuracy caused by environmental issues (e.g., mobile phone
kept in a pocket while sampling the street-level noise); and
(ii) wrong or invalid readings stemming from malicious users.
The former factor can be represented as the hard reputation,
which can be predicted by statistical methods [34]. And the
latter one can be represented as the soft reputation, but it is
unpredictable [35].

Given that most modern mobile devices can achieve above
97% sensory accuracy [36], several incentive mechanisms
(Section III) specially design to avoid malicious activities
when encouraging more participation. The soft reputations of
participators are evaluated in these reputation-based incentive
mechanisms. For erroneous data caused by the former fac-
tor, outlier detection or correctness strategies are proposed in
quality management (Section VI-A). As for privacy preserving
and security protection aspect (Section IV), most strategies
are applied on data itself. The QoI in this section should be
evaluated after data recovery (or decryption), which is rep-
resented by information loss. While in resource optimization
(Section V), the QoI performs as a driven for the design of
strategies. That is, the selection of participators, task assign-
ment, even transmission optimization should enhance or at
least guarantee the QoI requirement.

2) Budget Limits: The budgets provided by requestors indi-
cate the sum of expenditures used in the whole MCS system. It

includes the reward (incentives) provided to participators, ser-
vice charges for the platform, communication consumptions,
etc. It performs as a constraint for the design of mechanisms,
or the boundary of optimization algorithms. This factor is
mainly considered in Sections III and V.

3) Coverage & Distribution: The coverage of MCS projects
is the largest spatial scope covered by sensed data, while dis-
tribution shows the density of data at each sensed area. Caused
by subjective trajectories and preferences of participators, the
distribution is unbalanced. For example, less sensed data is
acquired from countryside areas, compared with the center of
the city. Together with the budget limits, the coverage of the
sensed area also becomes a constraint condition. The goal of
strategies to improve MCS is to keep a more balanced dis-
tribution until reaching the coverage constraint. This factor is
emphasized in Sections III, V, and VI.

4) Energy: Mobile devices are severely constrained by
their energy matters, including battery, memory, tempera-
ture, even computational and communication consumptions.
As one of the concerned factors for participators, energy-
cost MCS projects cannot attract or maintain the enthu-
siasm of users [10]. This factor is mainly concerned in
Sections IV and V.

III. INCENTIVE MECHANISM

As one of the bases of MCS systems, large enough partici-
pation is needed for plenty of sensed data. However, there are
two main challenges [37]: (i) Resource consumptions to exe-
cute MCS tasks are nonnegligible for participators, including
battery consumption, data subscription plan, time, and effort;
and (ii) Long-term commitment requirement distracts partici-
pator’s daily plan. So a proper incentive mechanism is critical
in MCS systems to motivate the active and persistent partici-
pation of mobile users. To decide an optimal reward strategy,
besides the price it sets, the QoI, budget limits, utilities and
fairness should also be considered. Utility matrices can be
defined both from the perspective of the platform and users
to quantify the cost-reward balance between them [35]. And
the fairness is to ensure that rewards should be earned by fair
competition among participators. However, these factors are
not necessary for each incentive mechanism. For instance, in
some remote area, where the QoI of collected data is difficult
to be guaranteed, participators should still be rewarded as long
as they contribute.

In this section, we classify the incentive mechanisms into
three categories according to their pricing strategies: classi-
cal economy based strategies, game theory based strategies,
and mathematical optimization based strategies. A taxonomy
in Figure 3 and a summarized table in Table II are pro-
vided, illustrating the relationships between related papers and
the comparisons on their concerned factors, promotions, and
solutions.

A. Classical Economy Based Strategies

In classical economy based pricing strategies, the pricing
strategies of selling the sensing data are divided into two
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Fig. 3. A taxonomy of the incentive mechanism in MCS.

parts: the fixed costs depending on the physical consump-
tions in sensing process, e.g., data transmission cost or battery
consumption, and the variable costs depending on different
flexible situations, e.g., market conditions.

Cost-Based Pricing Strategy: The cost-based pricing strat-
egy simply sets the selling price according to the consumption.
The price p is mathematically denoted as p = C × (1 + m),
where C is the total cost and m is the desired profit per-
centage [25]. In another papers, the pre-defined percentage
m can also be represented by the sampling rate of each sensor
node [38].

Consumer Perceived Value Pricing Strategy: Although the
cost-based pricing model is easy to implement, it is also
easily copied by competitors. Harmon et al. [39] present a
consumer perceived value pricing strategy, which externally
considers five perception factors both on the buyer side and
the seller side: the buyer’s perception on cost, data utility,
seller’s reputation, situation context, and buying motivations.
The comprehensive consideration on these five factors derives
the final decision of selling price for sensed data.

Supply and Demand Strategy: Although the consumer
perceived value pricing strategy has considered on market
factors, it still ignores the supply and demand relationship.
Correspondingly, Pindyck and Rubinfeld [40] present the sup-
ply and demand model. As the basis of this model, the law of
demand and supply is related to the price. The higher the price
is, the lower the quantity demanded, and vice versa. When
these two factors become equal, it reaches to a special point
called market equilibrium. The profit of the strategy is the
highest and a stable QoI can be achieved [41] at this point,
because the amount of goods being supplied is exactly the
same as that being demanded. The pricing adjustment can be
easily understood that any excess supply or demand will lead
to a movement in price towards this equilibrium point. Based
on this design, if no one reports sensed data, the reward price
will be automatically increased to promote participation [42].

Smart Data Pricing (SDP) Strategy: In the aforementioned
strategies, they do not consider the congestion situation. This
situation happens when a large number of users leverage
the lacking resources simultaneously and reach to the peak

demand. The SDP Strategy [43] can avoid this situation by
varying the price over different time and different usage of
resources. For instance, a customer has to pay higher electric-
ity unit price, if its own usage level of electricity is higher
than the average level in the wide of community.

B. Game Theory Based Strategies

Game theory researches on theories and mathematical mod-
els to solve competitive problems about the interactions
(i.e., conflicts or cooperations) between the rational decision-
makers [44]. Typically, we can recognize a lot of game theory
terms widely used in the design of incentive mechanisms,
including Nash Equilibrium (NE), Stackelberg Equilibrium
(SE), Subgame Perfect Equilibrium (SPE), etc. As the mone-
tary reward is a powerful motivator, it is popular to apply game
theory to incentive mechanisms for guaranteeing the exten-
sion and sustainability of participation in recent researches. In
this survey, we would like to show some specific models by
dividing them into two groups according to their outer forms:
gamification and auction.

1) Gamification: Gamification is one of the forms in
MCS incentive design. It introduces the game mechanism
which is applied to non-game contexts to motivate the active
participation of mobile device users [45]. A typical gamifica-
tion method is composed of three functions: tasks, rewards,
and communications [46]. Task means the sensing tasks in
MCS incentive mechanisms. Rewards can be either monetary
rewards, like money as a common one, coupons [47], and
services [48], or non-monetary rewards, like badges [46], [49],
scores [50], and credits [51], [52]. Communications like rank-
ings can encourage the competition among participators. Next,
we will introduce three main game mechanisms employed
in gamification incentive designs, including the Stackelberg
Game, the Bargaining Game, and the SPE-based Game.

Stackelberg Game: In this game, there are two kinds of
players, the leader and the follower. The assumption of this
game is that the follower will give a response on the leader’s
strategy, and the leader will consider this for its next strategy
decision, which indicates the interplay relationship with each
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TABLE II
SUMMARY OF INCENTIVE MECHANISMS

other. A typical example is the MSensing game [53]. Both the
platform and the users are players, where the platform is the
leader and the users are followers. Its sensing process can be
described as:

• The platform announces its reward R as its strategy
and each user arranges its sensing time accordingly to
maximize its own utility at the next stage.

• The strategy of user i is its expected sensing time ti . Let
t = (t1, t2, . . . , tn) denote the strategy profile consisting
of all users strategies, and t−i denotes the strategy pro-
file excluding ti . This stage is a non-cooperative game,
which is called the Sensing Time Determination (STD)
game.

This sensing process is mathematically proved to achieve
the NE [54]. It implies that there is a stable set of strategies
gaining nothing by unilaterally changing its current strategy
for a given reward R, and this stable strategy set is unique.
Hence, the platform can maximize its utility by choosing the
optimal R. This optimal R together with the NE of the STD
game are called SE, which implies the best response for each
player.

Zeng et al. [55] propose a Stackelberg Game based incen-
tive mechanism in the Word of Mouth Mode (WoM). In this
mode, contributors can invite more participators through their
social networks. The decisions made by contributors about the
quantity of sensing data can directly influence the decisions of
invitees. As each player in WoM has its only best response,
this game exists the unique SE.

Furthermore, the Trustworthy Sensing for Crowd
Management (TSCM) model [56] enhances the Stackelberg
Game by introducing reputation-awareness and trustworthi-
ness of participators. An outlier detection algorithm [34]
proposed accordingly is used to detect possibly altered data
which directly affects the trustworthiness of the corresponding
participator.

Bargaining Game: Other than the non-cooperative
Stackelberg Game, the Bargaining Game [57] is a cooperative
scheme, which considers the joint balance on distributing
objects among multiple players. So the final price accepted
by everyone reaches to the bargaining success.

In MCS problems, a Nash model [58] is commonly used
as a bargaining model. This model assumes that each node
is selfish, expecting its own reward to be increased. As intro-
duced below, the bargaining process between two selfish nodes
is realized by their message exchange, which is considered as
a win-win solution:

• Two nodes create their own message lists ̂La , ̂Lb includ-
ing their data types, sequence numbers, and appraisal
information;

• Node a and node b exchange their message lists and give
new candidate lists as:

˜La = ̂Lb −
(

̂La ∩ ̂Lb

)

(1)

and

˜Lb = ̂La −
(

̂La ∩ ̂Lb

)

; (2)
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• Based on the NE, the optimal Nash solution finally gets
two lists La and Lb , indicating a successful bargain.

A possible solution to increase the sustainability in
Bargaining Game is to increase the bargaining power of
loyal and failed participators [46]. The higher weights can be
assigned to the lists ̂La , ̂Lb of these participators in the last
bargain round, to maintain their continuous participation.

SPE-based Game: In the SPE-based Game, participators in
the game will join a subset of this game whose strategies fol-
low the NE. Participators can optionally decide to vote (accept)
or not vote (refuse) for a sensing task [49]. To keep a high
QoI of contributed data, the reputation of each participator will
be evaluated by their voting capacity. This capacity will be
increased only when the dissimilarity between uploading and
uploaded data is above a certain threshold, efficiently avoid-
ing redundant data collection. Correspondingly, the rewards to
voters will increase when their data dissimilarity is larger, or
decrease vice versa. As the reward system is tightly bounded
with the reputation of voters, this game can efficiently promote
the trustworthiness of participators.

2) Auction: To stimulate users’ participation, it is popular
to use reverse auction in incentive mechanisms. In an auc-
tion, an auctioneer requests bids and provides corresponding
goods in exchange for payments from their selected win-
ners [59]. The “reverse” means that the service provider is
the buyer and the users are the sellers who sell their sens-
ing data with claimed bid prices. At the first beginning,
some researches propose offline reverse auctions, which can
assure the minimizing and stabilizing incentive costs while
maintaining an adequate number of participants. But these
incentive mechanisms require deep participation, even the par-
ticipators sometimes are forced to change their daily plan
for fulfilling MCS sensing tasks. To avoid this shortcoming,
the online reverse auction is proposed to recruit participa-
tors depending on their real-time spatial-temporal information.
Next, we will discuss these two kinds of auctions in
detail.

Offline Reverse Auction: As the data quality differs from the
professionalism of participators, sensing data types, or spatial-
temporal situations, it is impractical to set a fixed optimal
incentive price. So a combined Reverse Auction Dynamic
Price (RADP) and Virtual Participant Credit (VPC) incen-
tive mechanism is proposed [60]. Briefly speaking, a service
provider selects a pre-defined number of lower bid price users
who will get these prices as their rewards. But it will cause the
“drop-out” on the next round for those unsatisfied users, who
will dramatically decrease the price competition and increase
the provided reward. To maintain continuous participation, a
virtual credit is taking into account. The loser in the former
round will get the higher credit and a much lower bidding
price, ensuring its probability to win in the next round.

Although this incentive mechanism can achieve its goals
with 60% simulated accuracy, it does not consider the loca-
tion of the users, the coverage, and the budget constraints.
Jaimes et al. [61] combine the Reverse Auction Dynamic Price
with Recruitment (RADP-VPC-RC) algorithm and the Greedy
Budgeted Maximum Coverage (GBMC) algorithm [62] to cre-
ate the Greedy Incentive Algorithm (GIA). GIA is a reverse

auction-based incentive mechanism concerning more about the
participators’ distributions to cover the areas of interest within
a given budget. Similarly, the Time Slots Incentive Algorithm
(TSIA) [63] leverages the popular model SPEAD [64] to
acquire a better sensing distribution through the target area
at the minimum price, and to assure a minimum number of
participants at each time slot.

In addition to the location coverage and distribution, the QoI
is also considered, that is, new mechanisms should pay as how
well the participants do [65]. Multi-attributive Auction (MAA)
mechanisms [47], [66] combine multiple attributes to evalu-
ate the QoI. They select the sensing data of the highest QoI
and give users corresponding incentives. Not only the multi-
attributive data but also the multi-attributive users should be
considered to get high-quality results, like Reputation-based
Incentives for Data Dissemination (RIDD) [67] and Cheating-
Resilient Incentive (CRI) [68]. As the trustworthiness of data
is directly related to users’ reputations, Pouryazdan et al. [69]
propose an anchor-assisted and vote-based incentive mecha-
nism. Before recruitment, the controller selects some anchor
points who have 100% trustworthiness during a pre-defined
time period. The trustworthiness of every node will be voted
by any other node where the anchor node has the full capacity
on voting.

Instead of the multi-attributive character, Koutsopoulos [70]
propose an optimal reverse auction with multiple winners
based on Vickery-Clark-Groves (VCG) auction [71]. This
method utilizes the incentive compatible mechanism. The
strategies where each user reports its true cost follow the
Bayesian NE. This auction scheme is a type of the second
price auction for multiple items. Any user tends to give a
high bidding to win, but it can not win at all. Actually, the
winning cost of this user depends on the second user’s bid,
so such a high bidding price will also increase others’ social
costs. Only when the user’s bidding price is equal to the true
value of an object, this user can finally win.

Similarly, Jin et al. [72] incorporate the QoI to design an
incentive mechanisms based on the reverse combinatorial auc-
tions. Here, the users can bid on the combination of different
kinds of commodities. This paper not only studies the single-
minded scenario where every user is willing to execute one
subset of tasks, but also investigates the multi-minded cases
in which any user might be interested in executing multiple
subsets of tasks. Since the winner determination in this auction
is an NP-hard problem, this paper designs a computationally
efficient mechanism with the close-to-optimal social welfare.

Further enhanced, Sun and Ma [73] propose a behavior-
based incentive mechanism with budget constraints by apply-
ing sequential all-pay auctions. All participators have to pay
their irrevocable bids and fulfill the bids regardless of who the
winner is [74]. This mechanism incorporates a winning prob-
ability into the utility function and thereby makes the all-pay
equivalent to winner-pay auctions [37]. In this auction scheme,
all competitors will try their best to win the bid, which can
improve the QoI and promote continuous participation.

However, all of the auctions mentioned above depend on the
full participation of sensing tasks. But in practice, the sensing
time of users is limited depending on their daily schedules.
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Motivated by this concern, Duan et al. [75] propose a Time
schedule-Preferred Auction Scheme (TPAS), considering the
partial fulfillment, attributive diversity, and price diversity. For
instance, the partial fulfillment means the sensing tasks require
the sensing time from 9:00 pm to 11:00 pm, but the user
can only sense from 10:00 pm to 10:30 pm. The attributive
diversity represents different sensing abilities for users like
the quality of their sensors and their initial locations. And the
price diversity is the different requirement on rewards varied
by users. The TPAS follows the first-come-first-serve princi-
ple and greedily chooses the potential winner until no task or
candidate can be selected. The final evaluations prove its com-
putationally efficient, individually rational, budget balanced
and truthful performances.

Online Reverse Auction: In practice, the users can freely
arrive or depart according to their daily plans, deriving the
design of online auctions. This type of auction aims to mini-
mize the total payment while completing a certain number of
tasks. The Frugal-OMZ mechanism [76] is a typical online
reverse auction, using a multiple-stage sampling-accepting
strategy. It dynamically enlarges the selected user set and
learns the bid threshold for future decisions. As long as the
user claims a bid lower than this threshold and there are
remaining tasks, it can be chose to join the sensing project
and get corresponding rewards.

Similarly, Sun and Ma [62] combine the all-pay auc-
tion and the posted price mechanism [77] for such dynamic
decision. And a belief values based incentive scheme [78]
is also designed for joint social states and the real-time
throughput.

C. Mathematical Optimization Based Strategies

Two common mathematical optimization based strategies:
utility maximization and knapsack problem, will be dis-
cussed in this part. Different from the utility considered
in game theory based strategies discussed before, utility
maximization incentive in this subsection is to apply math-
ematical optimization methods to solve max-utility functions,
where the results are the final reward decisions. It can be
applied both in single-objective sensor tasks (i.e., either to
make full coverage or under the limited budget), and multi-
objective scenarios (i.e., make satisfied coverage together with
high QoI and limited budget).

1) Utility Maximization: The utility function is a mathe-
matical form to represent the level of preference in microe-
conomics. In different research problems, the definitions of
utility functions are different. In SenseUtil [42], the utility
function represents the sensing task execution situation in a
certain sensing area. If the sensing tasks are not done, the
utility increases with the time, implying the high demand on
participation. For another example, Han et al. [79] care more
about the phone contexts (e.g., indoor or outdoor, in the pocket
or out of it). The utility is calculated by the sum of contexts
and the corresponding status (i.e., performing the sensing task
or not) of mobile devices.

Actually, the goal of the utility maximization problem is to
get the maximum amount of rewards as incentives. As defined

in STAR [80], the problem can be written as:

maximize
f S
ij ,f R

ij

∑

i ,j :eij∈ER

Uij f R
ij , (3)

where Uij is the utility function and f R
ij is the amount

of services provided by user i to user j. They solve this
problem using the graph-based algorithm inspired by the
cycle-canceling algorithm.

2) Knapsack Problem: The knapsack problem is popular in
combinatorial optimization [81]. Given a set of items with their
corresponding weights and utilities, the problem is to deter-
mine the number of items included in a bag, where the total
weight should be within a given limit and get to the largest
total value. This classical problem is discussed in the sample
selection for crowdsensing tasks [82].

In MCS, this problem can be described as [83]:
The participant i sells data with the bid price bpi (weight)

and the quality qi (utility). Only wcons bidders of n partici-
pants (wcons < n) are selected to collect the data, which is
also known as the constraint in the knapsack problem. The
objective is to select the smaller bid prices and the higher
quality within the wcons constraint in order to get the largest
profit.

To effectively solve this NP-Complete problem in pseudo-
polynomial time, Pham et al. [83] use Evolutionary Algorithm
(EA) to discover the near-optimal solutions. Firstly, the bpi

and qi are used to calculate the domination and Crowding
Distance (CD) of every participant. By doing pair-wise tour-
nament selection, which will select more participants of the
maximum CD or highest non-domination degree, the popu-
lation diversity can be increased. Then, using the selection
step of the Third Evolution step in Generalized Differential
Evolution (EGDE3) [84], the solutions are proposed as the
parents for the next generation. Furthermore, the Univariate
Model Distribution Algorithm (UDMA) [85] is used to build
the next generation, which can convert individuals from infea-
sible to feasible, and finally solve this Knapsack problem.
Such a near-optimal solution of the Knapsack problem is
always made by Greedy approximation algorithm and fully
polynomial time approximation scheme [86].

IV. SECURITY PROTECTION AND PRIVACY PRESERVING

Security issues are severely threatening MCS systems,
because of the large data flow and the lack of qualified secu-
rity mechanism [87]. For the former perspective, mobile device
users frequently contribute data to the platform via WiFi access
points or the cellular infrastructure, involving lots of sensitive
data like contact lists, device IDs, and location information as
well. These sensitive data can simply disclose real identities,
locations, or trajectories of participants. That is also the rea-
son for decreasing their participation willingness [8], [9], [88].
For the latter perspective, it is common to see that many MCS
applications on smartphones simply inform users of which sen-
sitive data is used rather than telling them the exact reasons for
using it. That makes users feel uncomfortable with the concern
of privacy leakage [89]. To guarantee enough participation for
MCS, it is necessary to protect the data security and solve the
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Fig. 4. A taxonomy of the privacy preserving.

privacy-preserving concern, so that people can feel at ease to
hand over their sensed data. To sum up, there are three main
security issues in the design of MCS systems [90]:

• Privacy: As most sensors will be carried by people,
privacy-preserving methods should necessarily keep the
user participation anonymous, unobservable and unlink-
able, which contains three levels of protection: (i) Both
user and device identities should not be revealed; (ii) Both
external (e.g., network providers) or internal (e.g., MCS
requestors) observers cannot infer the link between par-
ticipators and certain uploaded data; (iii) No entity have
access to infer any two or more reports contributed by a
same participator [91].

• Integrity: Since most privacy-preserving methods intend
to hide the real information, the integrity of the original
data is difficult to be guaranteed. Especially for the data
anonymization, it is inversely proportional to the accu-
racy of data analytics for the service provider. Malicious
participators can easily disguise themselves behind the
darkness of privacy-preserving mechanism without scru-
ple. So the balance between privacy and data integrity is
also one of the security issues.

• Availability: The adversaries to MCS systems may arise
different kinds of attacks. As one of the examples, adver-
saries can gain the control of sensing devices and flood
the network to dramatically affect the network capability
by the denial of service (DoS) attack [92]. The authen-
tication on the identity of participators can effectively
prevent this attack and ensure the availability of MCS
systems.

Actually, these three issues should be considered in each
MCS stage. In data analysis, some validation strategies [93]
are used for availability, and some other retrieval technolo-
gies like compressive sensing can be applied for integrity.
For data application, three issues have different priorities in
specific applications. For instance, in location-dependent appli-
cations, the availability is at the top priority to be protected,
because of the tag attacks including illegal remove, tag falsify,
or misplacement [94]. In this section, we mainly introduce
the protection mechanisms used in the data collection stage:
anonymization, obfuscation, encryption, and authentication.
An efficient protection strategy is required where computation
complexity, communication overhead, energy consumption

Fig. 5. The architecture of Anonysense.

and information loss are considered. Specifically, computa-
tion complexity can be represented by the running time in the
sensing system, and the communication overhead is caused by
extra message transmission for protection.

In the following subsections, we will discuss the related
techniques for each mechanism. Figure 4 presents a taxon-
omy of this section to classify security and privacy preserving
mechanisms. Their comparisons between different examples
are summarized in Table III.

A. Anonymization

The main idea of anonymization is to generalize the usersąŕ
private data into the same kind of group, which will con-
fuse adversaries [95]. Before introducing different anonymous
methods, a classical anonymization system will be described
firstly, which is called “Anonysense” [96].

As shown in Figure 5, there are nine important components
in this system:

• Mobile nodes (MNs): The mobile nodes (e.g., smart-
phones) are devices with sensing, computation, memory,
and wireless communication capabilities. In the crowd-
sensing process, each MN is recognized as the processor
of sensing tasks and the carrier of sensing data.

• Access points (APs): The access points are the
intermediate points between MNs and different services
(i.e., AS, RS, TS).
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TABLE III
SUMMARY OF SECURITY PROTECTION AND PRIVACY-PRESERVING MECHANISMS (L-LOW, M-MEDIUM, H-HIGH, C-CENTRALIZED, D-DISTRIBUTED)

• Anonymization service (AS): A trusted anonymization ser-
vice will apply anonymization techniques to ensure that
each report is mixed with other similar reports. It will
apply blurring techniques by adding uncertainty to the
location in reports to ensure that the MN cannot be
uniquely identified [97].

• Report service (RS): A RS will receive reports from AP
through MIX network or AS and send them to the final
application.

• MIX network: An asynchronous MIX network serves as
an anonymous channel linking MNs and RS, routing
reports through multiple servers, inserting delays, and
mixing reports with other messages.

• Task service (TS): It is a task transfer station between RA
and the registered MNs.

• Anonymizing network (Tor): It serves to protect the
network identity and the location of MN by anonymiza-
tion when it connects to TS to download new tasks.

• Registration authority (RA): It is a core responsible for
the whole connection in this system. It should certify
system components, MNs, and privacy-safe tasks so that
it can release tasks securely.

• Application (APP): The application is the task publisher
and the final report receiver, which serves as the terminal
of this system.

Followed by the processing sequence labelled in Figure 5,
the data flow in this system is:

The App submits a task (shown as 1) and the RA verifies
whether the task respects carrier privacy before releasing them
to the TS (shown as 2). At random intervals, the MN regis-
ters on RA, downloads new tasks from TS, and chooses the
taken tasks (shown as 3). After collecting the required data,
the MN sends these reports either to the RS or to the AS
depending on the sensitivity of them. If the report contains
sensitive information, the reports are sent to the AS directly

or to the RS via a MIX network (shown as 4). Finally, an App
can retrieve reports from the RS, and verify the integrity of
them (shown as 5). Since a lot of anonymization methods can
be used in this system, we will next introduce some typical
ones.

1) Centralized Methods: If the data are collected or ana-
lyzed only by service providers, the mode of anonymiza-
tion methods is centralization. Several typical centralized
anonymization methods are described below:

Pseudonym and suppress: This is the simplest method in
anonymization, which only give a pseudonym or suppres-
sion on user’s identities to hide the real ones. However, it
is too easy to be de-anonymized by adversaries. For example,
they can analyze your device usage habits to disclose your
identity [88].

MIX network: In Anonysense described before [96], [98],
the MIX network is a developed anonymization technology.
It is a statistical-based anonymizing infrastructure achieving
the k-anonymity property, where the information for each
person cannot be distinguished from at least k − 1 individu-
als [99]. This concept is used in Hot-Potato Privacy-Protection
Algorithm (HP3) [100]. The data is sent to a random friend
and this friend will choose another one to transfer this data in
the next hop.

Considering that this approach does not require any addi-
tional computation in mobile devices, the calculation complex-
ity is at a low level. But transferring data to intermediate nodes
instead of the platform directly is considered as extra com-
munication costs. According to evaluations [100], the average
number of hops reaches to 7 as the hop threshold is set to
10−5, which leads the energy consumption in transmission
to a medium level. Besides, the information loss is linearly
increasing with the number of malicious users. HP3 gets 5%
information loss when there are 7 malicious users, which is
considered as a medium level.
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Trusted third party server: To solve the limitation
of confidentiality, Trajectory Privacy-Preserving Framework
(TrPF) [101] adds a trusted third party server between an
application service (ApS) and RS, which stores user-related
information such as certificates and pseudonyms. The certifi-
cates are used for authentication to defense malicious attack,
while the pseudonyms are used to break the potential linkage
between spatial-temporal information and identities.

As this method anonymizes the sensitive locations on or
nearby participator’s trajectories by trajectory mix-zones graph
model, the information loss of suppressed locations is lower
than trajectory k-anonymity [102], which is considered as a
medium level. From the evaluation results, the information loss
reaches to 1×108 while trajectory k-anonymity gets 3×108 as
k equals to 4. Additionally, pseudonyms are used in different
trajectory segments, so the storage of them is the extra energy
consumption, which requires O(k) but lower than O(n × k) of
trajectory k-anonymity, considering as a medium level.

Tessellation: Since the above methods are not suitable for
some applications which need detailed location information,
the tessellation method can handle this problem. Assume that
there is no trusted intermediate entity, the location points
should be processed directly [98]. Each location point is
enlarged to a region called a tile, which should contain k points
of participators’ locations. Then the location of these k points
are replaced by the center of this range to get anonymization.

However, since every tile has to meet the k-points require-
ments to ensure k-anonymity property, the information loss
can be very large if these k points are far away from each
other. The original location of every point should be delivered
first to get its anonymized location. The total number of bytes
exchanged in evaluation is 33,025 bytes (32.3 Kbytes), which
can be decided as a medium communication overhead. But
both retrieving the list of open access points and computing
group signature for reports take a lot of computation time,
which occupy 46.6% and 49.1% energy in the whole sensing
process respectively. So the energy consumption is at a high
level.

Microaggregation: To solve the large information loss
problem in tessellation, Domingo-Ferrer and Torra [103] pro-
pose a variant of the Maximum Distance to Average Vector
(MDAV). Here, the tile is classified based on the average vec-
tor of records, which is also an attribute-wised first-step. Then,
the largest and the second distance record of that average vec-
tor are selected, which are denoted as dr and ds respectively.
Finally, two clusters around dr and ds are formed. One clus-
ter contains dr and the k − 1 records closest to dr . The other
cluster contains ds and the k − 1 records closest to ds . Similar
records form a more compact cluster leading to a more appro-
priate representative of cluster centroid to reduce information
loss.

According to the evaluations on real-world datasets, this
method gets 16.9% information loss and less than 1 second
running time, indicating lower information loss and compu-
tation complexity. However, to select the similar records, all
distances between records should be transmitted and stored
resulting in a middle level of communication overhead and
energy consumption.

L-diversity: Although we assume that an adversary does not
know the true values of the times and locations in reports, the
adversary in practice can still find out the spatial-temporal
properties and identities. It bases on the prior knowledge of a
user which is called background knowledge attack. To stop the
adversary from knowing this knowledge and preserve user’s
privacy, Huang et al. [104] plan to give the user multiple values
for its location attribute, which is also known as l-diversity
method enhanced from MDAV.

The first step of l-diversity is to define the size k × l of each
group, where k means k-anonymity property and l means the
level of diversity. It leverages the MDAV over the temporal
dimension. And the second step further applies MDAV over
the spatial dimension.

In evaluations, as the diversity level is 2, information loss
reaches to 15% which is less than MDAV and considered at
a low level. Additionally, the other performances are similar
to MDAV, which has low computational complexity, medium
communication overhead, and medium energy consumption.

Negative reconstruction: Different from all above meth-
ods, Horey et al. [105] propose a negative reconstruction
anonymization method, where sensor nodes transmit a negative
sample of the data to a base station instead of transmitting their
actual data. The base station then uses these negative sam-
ples to reconstruct a histogram of the original sensor readings,
which are the data samples that are not collected.

As there is no more extra reporting messages, the com-
munication overhead and energy consumption are low. The
computation is also easy. Proved by their evaluations, the
information loss revealing from the construction accuracy is
high, which increases with the number of categories in a
near-linear fashion.

Data integrity: With the k-anonymity, it will damage the
data integrity to some extent. However, achieving data integrity
while proposing privacy is an indispensable requirement for
keeping the trustworthy and user-friendly service in crowd-
sensing. Murshed et al. [106] find that the specific selection
on the k − 1 PoIs in k-anonymity can realize the compensa-
tion to the actual price of PoIs. This compensation can provide
the maximum match with deduced prices, which keeps the
data integrity at the application platform side. Certainly, the
k-anonymity applied here preserves the privacy. It is obvious
that the picking process will increase the computation com-
plexity to a medium level. But no more extra message means
the low communication overhead and energy consumption.
For 5 PoIs and 2 anonymity requirements, it achieves 93.51%
integrity implying a low information loss.

Another direction to keep a balance between privacy and
data integrity is to design a privacy-preserving incentive mech-
anism. Alsheikh et al. [107] decide the level of protection
into the reward allocation to encourage participators to upload
true data. This paper adapts the k-anonymity into privacy-
preserving design, while participators can freely select their
privacy levels without knowing the preferences of others. The
contribution of each participator will be calculated on the
accuracy of their uploaded data. Compared with the accuracy
acquired from the whole collected dataset, if there is no accu-
racy enhancement, this participator will get zero or negative
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payoff. The only performance difference between this design
with k-anonymity is this accuracy calculation, which increases
the computation complexity while other factors are the same.

2) Distributed Methods: If each mobile node maintains
its own local database and no central entity needs to know
these locations, this mode can be considered as a distributed
one [10]. Some typical security strategies are introduced as
follows.

PriSense: This method is combined with three steps: slic-
ing, mixing, and aggregating. Generally speaking, each mobile
node has to slice its data into n + 1 slices and randomly choose
n other nodes to send a unique data slice. The aggregation
means that every node sends their remaining slices together
with other received node slices to the platform [108].

Since every node has to make its own slices and send
them, the computation complexity and energy consumption
to store and transmit these slices are high. For communica-
tion overhead, after calculating the sum of communication cost
incurring from count query, the result can be 104 Bytes (around
10 KB), which is set as a medium level. But the information
loss is low because data themselves are not modified [10].

PiRi: The term “PiRi” represents Partial-inclusiveness and
Range independence. Considering that the range of queries
sent by users have significant overlaps, only a group of
representative participators are chosen to be protected [109].

This method firstly assumes that participators trust each
other, and do not reveal any sensitive information about their
peers, so the main approach is to communicate with the peers
instead of a centralized platform. Each participator can deter-
mine its privacy level: K and A. K determines the k-anonymity,
and A specifies the minimum resolution of the cloaked region.
Different from the MDAV, the user communicates with its
k − 1 closest peers to define its own cloaked region rather
than letting platform do this. Then, each user computes its
Voronoi cell [110] and defines the smallest circle containing
this Voronoi cell. This circle is used as the influence radius
ru for calculating the score of each user. Finally, the platform
only receives the data from one user in the cloaked region who
has the highest score.

Obviously, the Voronoi computation process increases the
level of computation complexity. The communication process
with peers increases the level of communication overhead and
energy consumption. In this paper, the authors use privacy leak
matric to evaluate the information loss and show a low-level
result which is only 3% difference.

Trustworthiness: To make sure the trustworthiness in dis-
tributed methods, the Anonymous Authentication of Visitors
(AAV) is proposed [111] with two phases: certified pseudonym
issuing phase and subsequent interaction phase.

In the certified pseudonym issuing phase, the user gener-
ates its pseudonym P and utilizes the partially blind signature
scheme to hide P in a blinded message B. The mobile app then
sends the ticket ID along with B to the app platform. The app
platform verifies the validity of ticket ID and inputs an expiry
date while digitally signing B. As a result, the app platform
has no clue about user’s pseudonym and possible linkages.

In the subsequent interaction phase, the mobile app uses P
and S to send user’s sensitive information. Since the signature

on B from the app platform has been unblinded to the bare
pseudonym P, the app platform can easily verify whether
the pseudonym P sent by the mobile app matches with the
pseudonym signed in the signature S and also whether it is
within the expiry date to finish this authentication process.

As there is no more required processing or transmission
in the AAV, these four evaluation elements (i.e., computation
complexity, communication overhead, energy consumption,
and information loss) are all at a low level. According to their
evaluations, the average response time of servers is below 6ms
even with the increasing requests per second.

B. Obfuscation

Different from anonymization, obfuscation tends to mod-
ify the original data of users independently, without mixing
with other users’ data. Depending on this character, there are
more distributed methods than centralized methods introduced
below.

1) Position Sharing: Dürr et al. [112] propose a novel posi-
tion sharing approach for the secure management of position
information in partially trusted systems of location servers
and location-based services. Users split up their precise posi-
tion into position shares of limited precision, which are also
known as the user-defined trust level. Then, these obfuscated
shares will be distributed among a set of location servers
of different operators. After that, even a revealing happens,
the leaked information will only within the strictly limited
precision range.

It is a more flexible method as the trust level can be
defined depending on different Location-Based Service (LBS)
precision requirements and different user requirements. Since
no entity can get the whole location information of nodes, this
method is a distributed one. But the generation os shares has
to be performed frequently for every position, so the com-
putation complexity and energy consumption are high. The
average share generation time can easily be over 1 second for
128 positions. However, each share is in a small size (40 bytes)
containing 32 bytes’ user id and 8 bytes’ translation vector,
and the transmission in UDP and binary format will cost 550
bytes for 8 shares. So the frequent transmission only leads
to a medium level of communication overhead. Besides, no
modification to actual data causes low information loss.

2) Data Perturbation: Based on the lack of hierarchical
trust structure, it is necessary to protect original data from
its source using data perturbation methods [113]. The gen-
eral idea is to add random noises with a known distribution
to the user’s data, after which a reconstruction algorithm is
used to estimate the distribution of the original data. This
technique allows users to perturb private measurements before
sharing locally, so it can be considered as another distributed
method leading to low communication overhead and energy
consumption. However, this local computation also adds the
computation complexity for every mobile node, and it also
brings noise into data, which makes the information loss is at
a medium level.

Additionally, the sensing node in MCS task can dynamically
join or leave. To meet this situation and decrease computation
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(a) (b)

Fig. 6. An example of Quadtree-based obfuscation. (a) A region and its
decomposition quadrants. (b) Quadtree representation of the region in (a).

complexity, Li and Cao [114] leverage a novel ring-based
interleaved grouping technique. In this method, only a small
number of nodes need to update their cryptographic keys when
the situation of these nodes are changed. They add O(1) noise
to the sum to ensure differential privacy. Here, the definition
of differential privacy is [115].

Definition 1 (ε-Differential Privacy): Consider the data
D as input and data f as output, then the algorithm is
ε-differential privacy when

P(f (D) ∈ S )
P(f (D ′) ∈ S )

≤ eε, (4)

where all measurable S ⊂ T of the input range. For all data
sets, D and D′ differ in a single item.

The noise continues to be enhanced. The noise is com-
puted by loss function (e.g., element-wise independent Laplace
noise) and then added to the average gradient to gain
ε-differential privacy property. As only a small set of nodes
needs to upload their encrypted data, this ε-differential privacy
is welcomed in sparse crowdsensing [116]. The introduction
of sparse crowdsensing can be found in Section V-C.

Although the running time is only 4.6 ms for both encryp-
tion and decryption when the node number n is 103, it
exponentially increases to 15.4 ms for n = 104 and 123.4 ms
for n = 105. Compared with other methods, we decide its
computation complexity at a medium level. As for communi-
cation cost, it is affected by the maximum fraction of nodes
compromised. Set this fraction as 0.1, the number of updated
nodes in the system is only 120 for both join and leave stages,
which is at a low cost. And the aggregation error is only
11.4%, indicating also a low information loss.

3) Quadtree-Based Obfuscation: Instead of the above
solution of obfuscating location by defining a circle or
square around the current location of the participants,
Krontiris and Dimitriou [117] propose a quadtree-based
obfuscation. It is a flexible method as the users can define
their own radius of the blurring region around their true loca-
tions. These locations can be represented by quadtrees. The
concerned space is first partitioned into two dimensions, then
decomposed into four equal quadrants, which are followed by
subquadrants, and so on, until a predefined limit (the radius)
is reached. Secondly, they build the correlated quadtree. The
root node is the region they focused, and the child node is the
quadrant of the region. The deeper they go, the more accurate
the location will be, until reaching limitation. Finally, based

on this quadtree, the location information can be obfuscated
by declaring their position on these fixed quadrants.

As shown in Figure 6 (a), the biggest rectangular represents
the focused region and the points inside are Mobile Objects
(MO). Each object obfuscates its location at different level.
MO1 has higher obfuscation level than MO2 and MO3. Its
corresponding quadtree is shown in Figure 6 (b). The MOs
with the same granularity will be linked in the same layer.
Since the maximal allowed location granularity is predefined
as fmax = 3, the height of this quadtree is also 3.

In this method, the users can obfuscate the location
information through their own agents, so no entity knows the
whole data points, implying the distributed property of this
method. Proved in their experiments, most (51.39%) traversed
trees are created at the first level of query, which costs the
medium level of computational delay in the system. Other
properties like energy consumption, communication overhead,
and information loss are all low.

C. Encryption

The main idea of encryption is using cryptographic
methods or building secure channels during the reporting
process [98], [118], which also bring high communication
overhead, energy consumption, and computation complexity.
But rather than modifying the actual data, it seems more
like a lock on data, so the information loss is low. Besides,
in this distributed mode, no entity knows the real locations
of users. Next, we will describe several encryption methods
used in MCS.

1) Group Signature: In Anonysense [98], the group sig-
nature can not only protect the users’ identities without being
disclosed, but also guarantee the integrity of the reported data.
The registration authority in this system gives registered users
a group of unique certifications which are used to encrypt their
own data and identities. For integrity, the RS only receives the
data from the appropriate certification, so the information loss
in this system is low. But the storage space for all certifications
and the cost of corresponding computations are nonnegligible.

2) Split Encryption: Another method to ensure privacy
and integrity simultaneously is the split encryption [119]. In
its probabilistic privacy architecture, it splits the actions of
authentication and data processing into two different entities in
the platform: an ID proxy server and an application server. The
application server uses its own public key to encrypt sensed
data and uses the public key from ID proxy to encrypt identity
information. So the ID proxy can only guarantee the integrity
of the data with its authentication system rather than knowing
the real data measurement. Considering that it is difficult for
adversaries to control both these two entities at the same time,
the entire message is hard to be disclosed.

To deal with the costly property of this method,
Vergara-Laurens and Labrador [120] introduce an energy-
efficient and accurate privacy-preserving scheme, which com-
bines this split encryption with anonymized methods. It divides
the sensed data into two sets: the first one uses this split
encryption while the other uses an anonymization scheme to
report the data. According to the evaluation in this paper, the
similar information loss will be caused when the thresholds
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are set as 0.7 and 0.5, where the half encryption on messages
(threshold of 0.5) can save more energy. It means that this
mode can not only achieve the desired privacy and accuracy
of location information, but can also become energy-efficient.

3) K-Vector Perturbation: In Privacy-Preserving
Compressive Sensing (PPCS) [121], the author uses the
K-Vector Perturbation (KVP) to obfuscate the incomplete
location data at the first step. The inverse KVP is then
leveraged to restore the original trajectory. The main idea of
KVP is to use K other trajectories to perturb the target one
while maintaining the homomorphic obfuscation property for
compressive sensing. Specifically, the private user i randomly
downloads K public vectors D(1),D(2), . . . ,D(k) from the
platform. This random process can bring more uncertainty
for privacy preserving. Then the user i generates a (K + 1)
random vector as its private key without being known by
anyone else, so the encrypted vector Si

′ can be calculated by
the fusion of original trajectory with public vectors. Finally,
the encrypted vector S ′

(i) is then transmitted to the platform.
Proved by simulated results, over 90% recovery errors are

lower than 250 meters, which can also be eliminated by map
matching [122]. So the information loss of it is at a low level.
Additionally, the storage of random vectors and the encrypted
vector calculation both increase the computation complexity
and energy consumption, while the communication overhead
is more because of the downloading and uploading stages.

D. Authentication

Malicious false attack in MCS is easily ignored but devas-
tating. On the one hand, some mischievous or malicious users
seek to fool the system by falsifying data reporting. On the
other hand, adversaries will pretend to be the normal user and
report a flood of copies to overload crowdsensing applications
(i.e., DoS attack), who are called Sybil devices. So the proper
authentication is needed to against this attack. In the next sub-
sections, some authentications in practice are described. As
the original data is not modified in all of these methods, the
information loss is all at a low level.

1) Grid Detection: Fatemieh et al. [123] regard the area of
interest as a grid of square cells. This proposed mechanism
is based on identifying outlier measurements inside of these
cells, as well as corroboration among neighboring cells in a
hierarchical structure to find out malicious nodes.

Consider a cell Cj containing m nodes and a dispute
threshold for this cell d0, which is the maximum acceptable
difference between the measurements of two nodes in that
cell. Assuming that each pairwise comparison nodes are Ni

and Nj , if the difference is greater than d0, the dispute counts
ci and cj for Ni and Nj respectively, are increased by one.
After all pairwise comparisons, if ci

m is greater than or equal
to the outlier threshold, the node is flagged as an outlier.

As no more extra messages need to be sent, the communi-
cation overhead and energy consumption are low. But because
of the detection algorithm introduced above, its computation
complexity is at a medium level.

2) DoS-Resistant Authentication: Due to the openness of
the MCS system, the malicious attack is likely to generate

task abortion by giving Denial of Service (DoS) attack.
As the improvement of Multi-level Timed Efficient Stream
Loss-tolerant Authentication (μTESLA), Ruan et al. [124] for-
mulate the attack-defense model as an evolutionary game, and
then presents an optimal solution, which achieves security
assurance along with minimum resource cost.

This method firstly sets multiple buffers for nodes and
randomly selects packages stored in node buffers. Secondly,
Message Authentication Codes (MACs) are broadcasted, and
then μMACs calculated with a hash function, are stored in
nodes. Finally, after the key is disclosed, the message will be
sent and the receiver can use this disclosed key to compute
the theoretical MAC of the received packet. After comparing it
with its attached MAC, the received packets are authenticated.

The 56Kb storage needed for each packet and the band-
width required for MACs is 0.6G which shows a high level of
communication overhead and energy consumption. But only
the authentication comparison should be calculated, so the
computation complexity is medium.

3) Co-Location Edges Authentication: Wang et al. [125]
intend to defend against Sybil devices based on co-location
edges. These edges are the authenticated records that attest-
ing to the one-time physical co-location of a pair of devices.
As Sybil devices cannot physically interact with real devices,
the edges between them and the rest of the network cannot
be formed. Based on this, the problem of detecting ghost
riders is simplified as a detection problem on the proximity
graph. As a detail, after creating the co-location edges graph,
SybilRank [126] algorithm firstly computes the landing proba-
bility for short random walks from trusted nodes to land on all
other nodes. Then normalized by the nodes’ degrees, it calcu-
lates their landing probabilities as the trust scores for ranking.
As short random walks from trusted nodes are very unlikely to
traverse the few attack edges to reach Sybil nodes, the ranking
scores of Sybil devices will be lower. So a cutoff threshold
can be set on the trust score, and the tail of the ranked list is
labeled as Sybil devices.

Intuitively, the ranking algorithm increases the computa-
tion complexity. But no more extra messages are sent, so
the communication overhead and energy consumption are low.
Reversely, according to its simulation results, the cost for Sybil
attacks to break its defense is tremendous, which requires
60k attack edges to maintain 3k Sybil devices, illustrating the
feasibility of this method.

V. RESOURCE OPTIMIZATION

One key factor considered by MCS requestors is the total
cost required, including the incentives paid to MCS partic-
ipants and/or the total energy consumption of all mobile
devices (e.g., battery and bandwidth consumption, subscrip-
tion contract, or transportation fees) [127]. Generally speaking,
requestors should consider not only the budget limits, but
also the coverage requirement and data quality for a satis-
factory sensing result. The trade-off between these consider-
ations leads to the proposal of some resource optimization
strategies summarized in this section. We review the related
research papers from four aspects: participant selection, task
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Fig. 7. A taxonomy of the resource optimization.

assignment, scenario analysis and transmission optimization,
to avoid redundancy and improve efficiency in sensing
projects. All related work will be summarized in taxonomy
Figure 7 and Table IV.

A. Participant Selection

Different from the incentives rewarding for participators,
participant selection strategies are targeting on the cost
optimization while ensuring coverage and QoI from the
requestor side. While selecting the large number (even the
whole group) of participants can bring better sensing cover-
age and more accurate analysis, the costs mentioned before
can be tremendous [128]. Besides, participators vary from each
other on different incentive requirements, sensing capabilities
and mobility patterns [129]. In order to optimize the required
sensing coverage and data quality within budget limits, how
to select the most appropriate participators in a large amount
of candidates is discussed in this subsection.

1) Basic Strategy: The Participant Selection Problem (PSP)
is a special case of the General Assignment Problem
(GAP) [130]. The definition of this problem is to arrange
objects in bins under the constraint of the weight limit and
make sure the maximization of the total value. In crowd-
sensing PSP, participants are objects and the constraint is set
by strategy makers, about task budgets or spatial coverage.
This GAP problem is considered as the NP-hard problem
where the optimizing method should be applied to solve it,
and the straightforward solution is to use the greedy algo-
rithm. Although there are numbers of variations introduced
next, they are all enhanced from the greedy algorithm. That
is, continuous data reporting until reaching a certain amount
of contribution is an effective way to harvest data from the
crowd [131].

Chu et al. [130] describe the greedy algorithm used in
crowdsourcing tasks, which is called PSP-G. The iterative
processes of this method are as follows:

• Firstly, every participator’s Benefit-To-Cost (B2C) factor
needs to be calculated by dividing its value to its cost.

• Secondly, all B2C factors are sorted in descending
number.

• Thirdly, the highest B2C factor is selected and the cor-
responding person is dispatched to the region where he
can contribute the most under constraints.

• Finally, the former steps are repeated until all partici-
pators are dispatched or the total value reaches to the
peak.

2) Coverage Required Strategies: The goal of PSP in this
part is to select the smallest number of participators to sat-
isfy the coverage constraint. CrowdRecruiter [127] shows a
two-phase participant selection framework: the first phase is
to map participants’ traces and predict their mobility, and
the second phase is the calculation of the joint coverage
probability for multiple users and iterative selection on near-
optimal sets. Different from GAP [130], the selection criteria
in CrowdRecruiter is the future locations of participators,
which are predicted by the mobility model constructed on his-
torical records. The threshold of this iteration is a pre-defined
spatial coverage.

In addition to the location information, Li et al. [128] pay
attention to the participators’ sensing contributions and pro-
poses a dynamic participant selection strategy. It uses cache to
dynamically record the changing of sensing tasks and sensing
data, where the new sensing data and new tasks can enter the
cache at any time. For participant record, when new data are
uploaded, the record of this participator’s contribution value
will be increased. And any selected participators who have “0”
contribution values will be removed before the next sensing
cycle. For task record, when the sensing data hits a certain
sensing task, the corresponding frequency of this task will be
reduced by 1. Similarly, the “0” frequency task will also be
removed. These updating processes on task set and selection
set represent the meaning of “dynamic”. Through the design of
cache, not only the historical call and location traces of mobile
users can be learned, but also the distribution of possible future
tasks can be predicted, where the suitable participators will be
selected by the evaluation on their abilities to a certain task
set.

Another dynamic PSP solution is inspired from piggyback
transmission which is named as EMC3 [132]. By collecting
the historical call records of individuals, it is possible to con-
struct the call/mobility pattern of a user and predict her next
move. If this user is most likely to place two calls in the target
area or will arrive at a low-density area, she will be selected
as the candidate.

3) QoI Driven Strategies: The other group of methods
are selecting the most qualified participants under budget
constraint, where the QoI is the selection criteria.
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TABLE IV
SUMMARY OF RESOURCE OPTIMIZATION (TYPE: S=STATIC, D=DYNAMIC; SCH.=SCHEME: C=CENTRALIZED, D=DISTRIBUTED; SC= SPATIAL

COVERAGE; TE=TIME EFFICIENCY; QOI=QUALITY OF INFORMATION; EC=ENERGY CONSUMPTION; CON.=CONTEXT)

Intuitively, the evaluation on equipped devices for partic-
ipators can indicate their qualifications, including the bat-
tery, network bandwidth, sensor state, number of sensors,
and rated sensor powers [133]. Similar to the Sociability-
Oriented and Battery-Efficient Recruitment (SOBER) [134],
Fiandrino et al. [135] design a participant recruitment strategy
named DSE. “D” inside is Distance, representing the dis-
tance between the candidate and sensing task location; “S” is

Sociability, implying the willingness of a candidate the partic-
ipate in sensing tasks; and “E” is Energy, concerning about the
remaining battery of the mobile device. To evaluate the quality
of candidate i, her recruitment factor Ri is calculated by the
weighted sum of D, S, and E, where the weight of each factor
is application-dependent. As the sum of these three parameters
equals unity, each higher value implies the preference of cer-
tain recruitment strategy. Finally, only the recruitment factor
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R which is above the threshold will be considered and the
highest several Rs will be selected until reaching the budget
constraint.

Song et al. [129] dynamically select a minimum subset of
participants to provide the best QoI satisfaction metrics for all
tasks. Although it still uses the greedy algorithm, the selection
criteria of this paper are comprehensive, including the expected
amount of collected data, the required QoI and users’ reward
expectations. In this method, the QoI metrics is calculated by
data granularity and quantity. For example, the sensing tasks
require the amount of data as (3, 3, 2, 1) in four areas respec-
tively, and there are three participants (a, b, c). If we choose
(a, b), they have abilities to assembly collect (3, 2, 2, 1) in these
areas, while if we choose (b, c), the collect result is (3, 3, 1, 0).
Although (b, c) finish the former two tasks, they collect less
data in the latter two tasks. Compared with them, (a, b) finish
tasks more balanced and efficient. Mathematically, the authors
calculate the ratio between the required metrics and the col-
lected metrics to define this QoI. They declare that the QoI of
(a, b) is higher than (b, c).

What’s more, Wang et al. [136] take reputation values of
participants into consideration. Two attributes are needed to
define this reputation value: participation willingness and data
quality. Inspired by the social principle, willingness is calcu-
lated by the average time gap between two collected behaviors.
The shorter the time gap is, the more enthusiastic the partici-
pator will be. So, the feedback value for each participator can
be represented by the combination of this calculated willing-
ness, data quality, and rewards. After participators contribute
sensing data to the platform, their reputation values will be
monitored by watchdog and updated dynamically according
to this feedback.

Although the PSP problem is considered similar to the
knapsack problem, the uncertainty of sensing values and qual-
ity make it more challenging than the knapsack problem.
To minimize the difference between the achieved total sens-
ing revenue and the optimal one, Han et al. [137] give an
online learning algorithm based on the Multi-Armed Bandit
(MAB) paradigm [138] to acquire the statistical information
on sensing values and qualities during the participation selec-
tion process. However, the lack of ground truth data leads
to the failure of data quality estimation. To solve this
problem, a context-aware data quality estimation scheme is
proposed [139]. Depending on the historical sensing data, a
context-quality classifier indicates the relationship between
the context information of participators (i.e., keeping still,
walking, or running) and their sensing data quality. Some vol-
unteers like the running ones (have low sensing quality in
noise sensing) will be filtered out by this context recognition
rather than data quality estimation.

As the above-mentioned strategies are all considering
individual-based selection, Azzam et al. [140] design a Group-
based Recruitment System (GRS) to assess the QoI in a group
of participators collectively. The QoI of each group will be
represented by their own fitness value, including the coverage
of sensing tasks, members’ distributions, device availability,
the reputation of participators, sampling frequency, residual
energy, and group cost. A mutate algorithm is applied to select

the most fit groups until occurring the convergence, where
maximal QoI remains unchanged after several iterations.

B. Task Assignment

In this subsection, we will describe two main kinds of task
assignment strategies: centralized strategies and distributed
strategies, that is, platform-centric decision-making strategies
and user-centric strategies.

1) Centralized Strategies: To globally monitor the process-
ing of MCS tasks, requestors would like to regard the platform
as the controller for task assignment. But it does not mean that
the platform can make exclusive decisions without consider-
ing participants. Some researchers [132], [141] pay attention
to user preferences to make a more practical arrangement
for platform-centric mode. According to them, user prefer-
ences include five factors: energy consumption, the payment
of contributing data, distance away from the place of interest,
task context, and privacy. Karaliopoulos et al. [141] take the
logistic-regression machine learning technique to profile users
from the past data on user preferences. So the assignment
problem converts to a sigmoid optimization problem, which
determines the task offered to the most suitable users.

Different from the user-centric model, it is difficult for
the platform to know the spatial and temporal information
of participants in real time. So, except the preferences, the
locations and the execution time of users can also be mean-
ingful. Spatially, Pournajaf et al. [142] collect the historical
trajectories of participators to predict their next locations,
which can be the substitution of the real-time location report.
Temporarily, Boutsis and Kalogeraki [30] decide to analyze
the historical execution time to estimate the finishing proba-
bility before the deadline, which is supported by the Power
Law Distribution Theory proposed by Ipeirotis.

Both spatially and temporarily, He et al. [143] combine both
spatial and temporal information and observe the location-
dependent character of crowdsensing, that is, sensing task
at specific place requires a certain amount of traveling time
for different mobile users. Considering the time budget of
users, the authors design an approximated Local Ratio Based
Algorithm (LRBA) to iteratively solve the allocation problem,
which can efficiently promote users’ sensing ability. Further
proved, LRBA can also be performed in a distributed way,
which is operated on the device side, and achieves the
same result with the centralized scheme [144]. Similarly,
Obinikpo et al. [145] target on efficient coverage on sens-
ing areas. Firstly, they model the entire coverage system as a
birth-and-death mechanism, where any new participator arriv-
ing implies a birth process and her exit after finishing sensing
tasks signifies a death process. As for the spatial analysis,
based on time constraints, the mean covered number of target
areas can be calculated to reduce redundancy. The task in a
certain sensing area will be assigned to the closest participator.
And as for the temporal analysis, the average waiting time for
a target area to be sensed will then be calculated. The sensing
target prepared for any busy participator will be automatically
passed to the next available participator to save this waiting
time. Moreover, Wang et al. [146] emphasize on the online
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MCS, which can capture location diversity of mobile partic-
ipators and dynamic task arrival time. The model is further
extended to maximize the proportional fairness for a fair task
allocation among participators.

Reversely, another type of tasks is called time-delay tasks.
For example, the temperature analysis needs the temperature
data which are allowed to collect from a place during the
whole day and be uploaded before the next day. Without time
bounding, researchers can consider dynamic solutions.

Xiong et al. [132], [147] propose a dynamic task assign-
ment strategy to ensure the full coverage of the target area.
The current states of candidates will be evaluated and assigned
to corresponding tasks. Three states are considered: (i) If a
participator has not called the first time, she will receive her
task information; (ii) If a participator has finished her first
call, she is required to upload his data at her next call; (iii) If
a participator has finished two calls in a sensing cycle, she
will not be assigned in this cycle. During the iteration of
this assignment, the performances of candidates are assessed
according to their contribution and the task will be dynami-
cally assigned to the most suitable participator in the future
round. And this iteration will stop until the received data
reaches the pre-defined amount or the sensing areas is fully
covered.

Besides dynamic task assignment, researchers also consider
about dynamic task area assignment. Depending on the obser-
vation that in adjacent time and areas, sensing data is similar
in one sensing cycle. So the minimum cells can be selected
and assigned suitable tasks to avoid data redundancy [148].

From the above discussion, for the time-sensitive tasks,
the instant locations of users are analyzed. While for
the time-delay tasks, the historical trajectory and mobil-
ity profiling are considered to make assignment. But the
afore-mentioned strategies only talk about the single-task
assignment, Guo et al. [149] discuss the multi-task assignment
for both of these two kinds of tasks and a greedy-enhanced
genetic algorithm is proposed to solve them.

2) Distributed Strategies: As the central strategies con-
sidering the real mobility data of participators, the privacy
involved is sensitive to participators [150]. To solve this
problem, researchers tend to put users as the centric of the task
control system and let them choose any task they like without
reporting their own situations. Asynchronous and Distributed
Task Selection (ADTS) algorithm [150] represents people to
make decisions using their information offline. By inputting
the cost on movement, speed, location and the number of par-
ticipants, this algorithm will find the largest payoff route and
report to the platform as participator’s selection. This algo-
rithm considers both participators’ interests and fairness, and it
will not leak private information because of its local operation.

Another distributed framework [151] lets each device com-
pute their data collection utility, sensing potential, and envi-
ronmental context to comprehensively determine whether to
take the sensing tasks. The data collection utility is depend-
ing on the amount of already-collected data in certain sensing
area which is feedback by cloud collectors [152]. The higher
requirement for further uploading leads to a larger value of this
parameter. The sensing potential is represented by the local

energy consumption for mobile devices to sense and upload
sensing data. And the environmental context circumstances the
status of the mobile device, such as the location or the mobility
pattern [153].

Moreover, there are some methods combining both cen-
tric and distributed models. Pournajaf et al. [154] introduce
a two-stage optimization approach: the first stage is a global
assignment according to the cloaked locations of users, and the
second stage is a client-end fine-tuning stage where the users
can slightly adjust their interested tasks without destroying the
balance of the whole assignment picture. Here, the first stage
is centric and the second is distributed, which combines the
advantages of the two modes and make it more flexible.

C. Scenario Analysis

In MCS tasks, the data-providers could continuously upload
their sensed data to the platform in the moving situation. But
sometimes, their mobility may lead to redundant coverage on
certain areas. On the task side, different application interests
on different cells. For example, the traffic monitoring appli-
cations focus on the highways and roads while the parking
applications pay more attention to the parking lots. For both
of these two reasons, it is necessary to give sensor management
according to the specific scenario analysis.

In the relevant papers, words like “context”, “semantics”,
“location dependent” are often linked with scenario analysis.
It reveals that the goal of scenario analysis strategies is to find
the context of sensing situation which can be represented by
the specific interests on locations or semantics. To solve the
large-scale mobile crowdsensing task, Xiao et al. [155] divide
the target areas into lots of “cloudlets”. These cloudlets can
be either a business, community or even a data center which
means a place for a special group. This decentralized method
is operated by a master application called Master Application
Virtual Machine (MAVM), which is beneficial to reduce band-
width occupation. Another explanation of semantics is the
concept of “content-centric”, where the semantics of sensed
data are represented by its expressed contents. Corresponding
to different kinds of mobile devices (e.g., smartphones, wear-
able devices, smart vehicles, etc.), the sources can be used
from the crowd are various, deriving complex semantics
discussed here. For instance, the semantics of sensed data
in vehicular clouds can be road construction, gas station
information, parking availability, and so on [156]. While the
semantics of sensed data in smartwatch can be jogging steps,
heartbeats, or gym locations.

Besides the context needed to be considered, the inner
structure of crowd data can also be mined to reduce
sampling burdens, including sensor and data reduction.
Marjanović et al. [157] intend to give an energy-aware and
quality-driven sensor management algorithm. The “energy-
aware” means fewer sensor selection and “quality-driven”
means the insurance of enough sensing coverage. Firstly, the
algorithm gives an application-specific valuation function for
sensor selection, including the different weight for each factor
varied on different applications, battery level, trustworthiness
level, sensor location goodness, data speed, and the current
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state of sensors (active or inactive). By evaluating different
values of each sensor, the algorithm chooses the top k sensors
which can satisfy the needed coverage to finish crowdsensing
tasks. This k index is also application dependent. For instance,
to monitor air quality, the number of needed sensors in the city
should be bigger than in the park.

Additionally, Xu et al. [31] care more about data reduc-
tion. Assuming that there is the spatial-temporal relationship
among data, which is called the underlying sparse structure,
this paper proposes compressive sensing to reduce sampling
rate depending on this relationship. This method can get a
lower sampling rate than the Nyquist sampling rate and can
still guarantee an accurately reconstructed signal.

To better understand, they give a function:

Y = ΨX , (5)

where Y denotes their interested signal, Ψ is the base of con-
verts and X is a k-sparse coefficient vector who only has
k non-zero entries. This function represents the compress-
ibility of signal Y. If Y can be projected into a Discrete
Cosine Transform (DCT) base and only get several sparse
representations, then the number of these representations is k.

In Z = ΦY = ΦΨX , Φ is a random partial identity matrix
which is known before. It represents the sampling process
which randomly picking on the rows of ΨX . After acquir-
ing sampled data, reconstruction should be made to recover the
original signal. It combines two process: 1-norm minimization
to find X and base training to get Φ. As the evaluation in this
paper, the reconstructed rate can reach over 90%.

Similarly, Wang et al. [158] also make use of compressive
sensing to reduce the amount of sensing data, by narrowing
down the sensing areas instead. Based on the spatial-temporal
relationships between adjacent urban areas, this paper only
allocates individual task in a small subset areas and calculates
the data on the other sets of areas by the missing data inference
algorithm in compressive sensing. Through this sparse sensing,
the satisfied data quality can be achieved and the required
participant sensors are reduced at the same time.

Together with the underlying sparse structure of data, the
specific application knowledge and logic dependencies among
data items can be exploited to reduce the underlying network
bandwidth consumption [159]. Some severe scenarios, like
disaster response or humanitarian assistance missions, have
well-defined protocols for carrying out the sensing tasks and
specific concerned areas or objects. For example, the earth-
quake rescuing task pays attention to the destroyed degree of
buildings and some closest cabins which can become tempo-
rary shelters. Only the pictures on architectures and the aerial
images are needed to analyze the maintenance or occupation
conditions in surroundings. Further enhanced, the population
distribution data, can imply some possible shelters which
is unlikely to be occupied, then aerial images covering the
candidate paths do not need to be gathered.

Another innovation on energy-efficient strategy is the GPS-
less sensing scheduling [160]. As a matter of the high
consumption on GPS location, the authors tend to weaken
the function of GPS and use a probabilistic model for sens-
ing coverage without accurate location information. Actually,

this paper uses Google location service to get a rough loca-
tion of users and leverages the relationship between location
disk and the target disk to calculate the coverage probability.
The disk mentioned here is a circular coverage model defined
in the paper. As the known of reported location and target
location, this calculation is feasible. Similarly, another coarse
location prediction is proposed by StreetLoc [161]. As the
target sensing area of this paper is streets in urban areas. Its
instant location scheme is built depending on three observa-
tions: (i) Pedestrians generally follow the linear path of the
walking street; (ii) The walking speeds of participators are
considered uniform in a street segment; (iii) These walking
speeds are spatially and temporarily consistent. According to
these three observations, only the entrance and exit of a street
needed to be detected by GPS. Together with the walking
speed estimated from the historical mobility pattern of each
participator, the instant location can be calculated and GPS is
also deactivated along the street.

D. Transmission Optimization

To process unprecedented amounts of data in MCS, tradi-
tional methods tend to give a better WiFi offloading or a small
heterogenous cellular network supporting their transmission.
As the wireless data has become a “tsunami” [162], continuous
reporting is proved as energy consuming [163]. The leverage
of point-to-point technologies (e.g., WiFi Direct, LTE Direct)
gives rise to opportunistic transmission.

There are two main characters for opportunistic transmis-
sion [164]: Firstly, only when two participatory points are
in the range of direct radio communication can they con-
tact sporadically. That means, opportunistic transmission is an
evolution of the ad hoc network. Secondly, an opportunistic
relay is needed to enhance transmission opportunity, instead
of the single hop. Making a share among the whole network
picture can be of great help [162]. Depending on the large por-
tion of participators, exploiting the natural gregarious attributes
among humans and making them cooperate with each other is
the foothold to achieve this character [165].

Targeting to this cooperative factor, a neighbor collabora-
tion mechanism is proposed [166]. This paper firstly plans to
let each sensing node save its sensed data locally and upload
until it shows up around the hotspots of WiFi. Although it
can reduce consumption to a large extent, the delay is too
long and unstable. Then, this paper tends to make short-
distance radio communication with relevant neighboring nodes
and opportunistically upload to the platform. However, the fre-
quent neighbor discovery and link establishment still consume
a lot of energy. So this paper finds out three problems to
solve: trade-off between message delivery delay and energy
consumption, robustness against node density and overhead
for link establishment.

Given an observation that in crowded areas like shopping
malls or parks, people always play in droves. The analysis on
their radio connected history can help on finding groups. Each
group is regarded as a cluster who has its own local network.
The frequent neighbor discovery can be avoided and the link
establishment does not need to be often refreshed. By the way,
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the authors take Bluetooth as the point-to-point technology to
solve the packet collision problem in the ad hoc network.

Another improved version of opportunistic sensing is
Piggyback Crowdsensing (PCS) [82], [167]. It mainly collects
and uploads data on the special situation when sensors have
activated a WiFi/LTE like a phone call, an e-mail checking,
a website browsing. The collection and uploading processes
are running in the background, which greatly reduce user
involvement. Besides this channel, some users without the
data plan can transfer data to a relay device via “zero-cost”
network (i.e., Bluetooth), which can also avoid extra transmis-
sion cost [168]. However, the frequent applications on smart
devices bring more sensing opportunities, which makes it dif-
ficult to choose the best one [82]. Simply using the greedy
strategy to allocate opportunities may miss a better oppor-
tunity, so a predictive model to balance current and future
opportunities is needed. Capturing each user’s special app
usage pattern, e.g., when the user often calls or surfs on the
Internet, the authors can predict and decide when to sample,
sense and upload data to the platform. The coverage constraint
here should also be considered [132], which we have described
in Section V-B.

However, taking photo quality estimation as an example,
if we run computer vision algorithm on phones, no mat-
ter how the design of algorithm is adaptive or light, the
basic consumption on battery charge or CPU will still be
large [33]. To make comparison between collected data and the
ground truth, those true photos should be downloaded firstly,
which will increase the burden of limited bandwidth. So, most
researchers decide to run quality management on the platform
side. Restricted by bandwidth resource, the authors then trans-
mit metadata of collected photos instead of photos themselves
to the platform in order to identify redundant or irrelevant pho-
tos. This quality measuring assisted transmission optimization
is also applied for data collection for machine learning. Both
the uploading and querying cost on sensing data and labels
respectively should be considered under the budget limits.
Xu and Zheng [169] decide to use both the local and global
servers to control it. The distributed local server controls the
upload upper limit, while the global server decides the query-
ing limit on annotations based on active learning. Only the
most informative samples are floating in their MCS system,
which greatly saves the transmission consumption from both
uplink and down-link aspects.

VI. DATA ANALYSIS

An important task in the MCS system is the aggregation
of user-contributed sensing data. However, the large amount
of raw data collected from mobile devices needs to be pre-
processed before being applied in applications. There are two
techniques proposed in this section: quality management and
multimodal data analysis. The quality management technique
is to evaluate the quality of collected data, delete invalid data,
and supplement missing data. Moreover, the multimodal data
analysis technique is to mine the potential relationship between
the managed data and provide guidance for the next applica-
tion. In this section, we will present existed analysis techniques

on these two parts for a glance. The summarized taxonomy
and table will be respectively shown in Figure 8 and Table V.

A. Quality Management

The strategies designed in Sections III and V for QoI
improvement are realized by improving the soft reputations
of participators, while the hard reputation of sensing devices
or other environmental issues should be further managed. In
this subsection, the data quality management in MCS is sys-
tematically introduced in three stages: before sensing, after
sensing but before uploading data, and after uploading stages.

Before sensing, the goal of quality management is to avoid
“fake” participators (i.e., programs or virtual machines). As
the first firewall in data quality management, various authen-
tication methods have been applied in current MCS systems,
including slider dragging, verification code inputting, catego-
rized photo selecting, etc. Similar with the Amazon Turk’s
login system, some direct questions like “what is the name of
this project?” can also work well for simple identity authen-
tication [32]. A real user can quickly give the right answer,
while a program will fail without specific coding.

After filtering out virtual participators, the data quality eval-
uation system is further designed before uploading stage.
This system aims to improve the quality of uploaded data
by pre-processing on the sensed data, where only satisfied
data can be selected for transmission. To be efficiently applied
in mobile devices, this system should be light-weight, where
few computational resources are required in its processing. A
light-weight comprehensive validation system optimizes and
integrates several evaluation operations in one algorithm [93]:
clustering, classification, change detection and frequent pat-
terns analysis. This algorithm is also robust for different types
of devices, where parameters related to battery level, CPU
usage level, data stream rate, and other systematical settings
can be customized.

After uploading, both the detection of faulty data (also called
as truth discovery [170] or outlier detection [171]), and the
correction on them can help to improve the quality of col-
lected data. As for the detection, the comparison between the
collected data and the ground truth can detect redundant or
missing data. Take photo quality estimation as an example,
some high-quality photos on certain areas can be downloaded
online and the comparison is made to filter redundant and
irrelevant photos. A straightforward comparison method is to
apply computer vision techniques where the target will be rec-
ognized in photos (i.e., to evaluate relevance) and the similarity
between two photos should be lower than the threshold (i.e., to
detect redundancy) [172]–[174]. However, the large cost to run
these machine learning models including time consumption on
model training, the CPU and GPU operation consumption, and
the bandwidth occupation to transmit full pictures or down-
load ground truth cannot be neglected. To solve this problem,
Wu et al. [33] develop a resource-friendly photo coverage
model to quantify the value of photos. Only the metadata of
photos are analyzed to infer their coverage to target areas and
corresponding quality values. These metadata include loca-
tions, orientations, and views of the camera, which will be
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Fig. 8. A taxonomy of the data analysis.

caught by GPS, accelerometers and magnetic field sensors in
mobile devices. Consider them as just a series of floating num-
bers, then the transmission, computation, and storage process
can all be light-weight and cost-efficient.

Another observation used in comparison is the similar-
ity of collected data between neighboring areas or during a
short term spatially and temporarily. For example, the weather
among sub-areas in a district will be similar, and the prices
for goods in one supermarket will also be similar during
a short period. Taking this observation into consideration,
Zhang et al. [175] leverage graph comparison on historical
human traces to correct the obvious numerical errors and
detect missing records. After comparing the data collected in
a short time, the authors can filter out the duplicated records.
Advanced in technology, Talasila et al. [176] require both col-
lected photos and correlated Bluetooth scan results to reveal
the device’s belonging Bluetooth communication area. Firstly,
the framework manually or automatically validates some pho-
tos’ trustworthiness. This step can be operated by human eyes
or graphics recognition algorithm, which takes the ground truth
photos collected by trusted experimenters as a baseline. The
locations and time of these validated photos will be the refer-
enced data to extend verification with nearby collected point
results in the same time. Here, the Bluetooth scan results are
used to justify “nearby” data. After analyzing the location of
the photo, if it is in the referenced area, it is considered to be
true. In Figure 9, if task 12 claims to belong to area A. But
after graphic recognition and Bluetooth verification, it is not
in A’s circle. It will be regarded as a malicious point.

This observation is further applied in an optimization-based
truth discovery problem where the ground truth for compari-
son is unknown [170]. The correlation between entities divides
the whole group of data into different independent sets, where
the correlated data gather in the same cluster. An objective
function is applied to each cluster to measure the difference
between the collected data and its unknown truth, adding
the reliability of participators as its unknown weights. The
ground truth will be estimated and updated depending on the
optimization of this function and the correlation regulariza-
tion terms will punish the deviations in the truths between
correlated entities until satisfying the coverage criteria.

For correction, Wang et al. propose a DETECT-
and-CORRECT framework [171] based on compressive

Fig. 9. Real distribution of tasks in areas detected by Bluetooth verification
mechanism.

sensing [177]. In the DETECT stage, a time-series based out-
lier detection algorithm [178] is applied to detect suspicious
data. And in the CORRECT stage, these suspicious data will
be marked as missing data, and the whole data set will be put
into compressive sensing for reconstruction. The difference
between this reconstructed matrix and the raw data matrix is
iteratively evaluated to re-check the detection result at the first
stage. If the difference is lower than the threshold, the detec-
tion is considered right and vice versa. The final reconstruction
value until the coverage fulfilled is the final correction result.
These two stages make each other possible: (i) Compressive
sensing can effectively reconstruct missing values effectively;
(ii) The biggest difficulty for compressive sensing is the exis-
tence of faulty data and it can be eliminated by the DETECT
phase.

B. Multimodal Data Analysis

The big data collected by MCS have diversed or multimodal
characteristics. Different papers have different meanings on
“multimodal”: some claim that it means different types of
data including videos, pictures, sounds, or letters [179], [180];
some consider that it means different resources of data such
as cellphone data, transport data, social media data, and so
on [175], [181], [182]; and there are still some researchers
think that it means different levels of data (e.g., from activity to
walk to slow pace), which specifically represent heterogenous
motion status [183]. No matter which meaning is referred in
the related work, data analysis methods in MCS can be divided
into two kinds: separated methods and unified methods.
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TABLE V
SUMMARY OF ANALYSIS TECHNIQUES

Fig. 10. The illustration of hierarchical structure in Lasagna.

The separated methods focus on the processing on each
piece of data. The machine learning method is commonly
used here to train a large amount of data and classify them
one by one. As different type of data cannot be trained in
the same model, they should be partitioned into different
classifier first. To analyze place-centric contexts of collected
data, Chon et al. [179] propose four sensor-data classifiers:
Optical Character Recognition (OCR), object recognition,
speech recognition, and sound classification. Depending on
the type of uploaded data, the algorithm allocates the data
into the corresponding classifier and gets results on different
contexts. For example, if a picture of an attraction is com-
ing, this picture will be input to object recognition model to
find how many spots are in this picture so that the correlated
location can be recognized.

The machine learning method can be further used to
understand human moving patterns by distinguishing differ-
ent behaviors of them, like walking or smoking. To train such
a physical model, pre-knowledge or labeled data are needed.

However, some comprehensive exercises are difficult to label,
like smoking while walking. Even there are solutions to label
those exercises, the fining problem that whether to label them
roughly or specifically is still a barrier. Lasagna [183] designs
a universal representation for all activities at multiple reso-
lutions without prior knowledge. By applying unsupervised
learning, the labeled problem can be avoided and a hierar-
chical structure to represent activities can deal with fining
concern. The illustration of this hierarchical structure is shown
in Figure 10, where the finer representations on exercise and
sit are given by the next layer.

Nevertheless, it is difficult to process every piece of message
when the scale of data becomes extremely large. It derives the
unified methods, which fuse data and process on them together.
Graph theory is widely used here, where collected data can be
represented by nodes on a map and the relationship of data
can be denoted by the links between nodes. Some graphical
methods like mapping coverage, clustering, and Singular Value
Decomposition (SVD) can be used to analyze the data.

Zhang et al. [175] point out the importance of compre-
hensively analyzing multimodal data from different sources:
avoiding bias. “Bias” means partially seek the patterns only
from one side. For example, if researchers want to analyze
the transportation patterns of citizens, the leverage of the data
from bus station can only reveal the bus pattern, where the
subway and car patterns are ignored. Dealing with this matter,
the paper gives a unified process on the whole transporta-
tion data together with cellphone data which can also reveal
the tendency of mobility. By labeling the location of the col-
lected data as a node into the map, the authors find out that
cellphone data are highly distributed on larger coverage than
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transit data, which is more regular and limited. So this paper
selects Gc + Gc (cellphone data and non-cellphone data pre-
dicted by historical data) to denote the whole mobility picture
and requires this adding result must cover the transit graph.

Other than this mapping coverage method, the cluster-
ing method is also considered [180], [182]. They apply the
generic toolkit for mobile data mining namely Open Mobile
Miner (OMM) [184] where the Light Weight Cluster (LWC)
algorithm uses data cluster technique to match high-speed
data streams. The paper [182] also applies the OMM on
data mining while the data includes both collected sens-
ing data and social media data to specifically support real-
time queries pertaining to locations of interest. Moreover,
Zaslavsky et al. [180] further define a fuzzy situation inference
in mining. These fuzzy situations often occur on the transi-
tion of two situations, like a situation between hot and cold,
which are called “a little cold” or “quite hot”. This definition
is indispensable to accurately represent data, especially when
monitoring the health status of the human body.

Furthermore, the Community Activity Prediction (CAP)
method [181] combines SVD, clustering and tensors analy-
sis methods together. Firstly, the authors merge the collected
data into an individual-community map where the row repre-
sents the community and the column represents the individual.
The node (i, j) denotes the relationship between individual and
community. If individual i belongs to community j, then the
value of this node is 1, otherwise, the value is 0. Secondly,
apply SVD to this map and select the last two dimensions
of the left singular vectors to project. Thirdly, make the clus-
tering process to limit the type of community. Finally, use a
three-fold tensor <Time, Community, Activity> to indicate the
collected data, and make Tucker decomposition to get three
projected matrices, which are useful for representative approx-
imate tensors. By doing all of these, the final representation
results can be acquired.

VII. APPLICATIONS

As the last step in data-oriented MCS projects, the col-
lected data from the crowd and the processing on them give
solutions to various applications for constructing a smart city.
The MCS-applied smart city tries to better support and sim-
plify our daily life [185], generally speaking, from three
main aspects: environmental, infrastructural, and social sens-
ing [2]. According to the specific application scenarios, in
this section, we deeply divide these three aspects into four
types: (i) indoor localization, where techniques are specially
designed for the indoor environment; (ii) urban sensing,
which involves public infrastructural phenomena like traf-
fic issues and urban planning; (iii) environment monitoring,
which breaks the limits on monitoring severe environments,
(iv) social management, which concerns more about human
and their relationships. Related researches are introduced in
each subsection. To better illustrate their relationships, the
taxonomy of this section is drawn in Figure 11. Combining
with the above-mentioned sections, we will analyze the related
MCS techniques applied in each application (i.e., incen-
tive, safety and privacy preserving, resource optimization,

and data analysis methods) and summarize its adoption ratio
in Table VI.

A. Indoor Management

GPS technique is widely used in locating or mapping. But
it is inefficient in the indoor scenario, where too many wall
barriers and architecture shielding weakening its functions. To
deal with this problem, researchers tend to apply MCS systems
to build the indoor floor plans.

At first, Radio Frequency (RF) fingerprint based on WiFi or
cellular signal is proposed [186], [187]. But it needs some prior
knowledge and user-specific information including users’ ini-
tial locations, stride-lengths and their device placements (e.g.,
in/out the pocket), which makes this difficult to be applied
into practice. So Rai et al. [188] propose Zee, a ZEro-Effort
MCS system, which only needs an indoor map accompanied
with WiFi and inertial sensor measurements to infer loca-
tion over time. There are two key technologies innovated in
Zee: Placement Independent Motion Estimator (PIME) and
Augmented Particle Filter (APF). PIME uses mobile sensors
(i.e., accelerometer, compass, and gyroscope) to estimate the
motion of participators. And the APF combines this estimated
motion result with the floor map as inputs to track the location
of participators. Zee also periodically scans for beacons from
proximate WiFi Access Points (AP) and records the Received
Signal Strength Index (RSSI) labeled by its timestamp, to
further increase the location accuracy on the floor. On the
one hand, this application does not consider the incentive or
privacy preserving strategy in real-life MCS appliance, lead-
ing to a relatively low adoption ratio. On the other hand, the
dynamic location estimation can be achieved without any prior
knowledge, but it relies too much on the WiFi network which
means interference in a certain range. So a single network data
collection is not useful.

Instead, a hybrid indoor mobile phone localization mech-
anism is needed. Pazl [189] aims to combine PDR with
WiFi fingerprinting to get accurate locations. Pedestrian Dead
Reckoning (PDR) is a local estimation algorithm utilizing
the sensors to measure numbers of steps, stride-lengths, and
directions of pedestrians to infer locations and traces. WiFi
fingerprinting is to make an offline location database with AP
information and give an online comparison to locate an object.
Although the PDR has the error accumulation problem and
WiFi fingerprint has less efficiency on places where AP is not
covered, the combination of them can make up for their own
shortcomings. As declared in this paper, the WiFi fingerprint
can correct the error of PDR and increase localization accu-
racy. However, a continuous localization application needs to
monitor the transition from outdoors to indoors for participa-
tors to start sensing. Pazl fails to provide this related solution,
which indicates low real-life adoption ratio.

However, the indoor map needed in Zee is sometimes not
available. Then Gao et al. propose Jigsaw [190]. It uses pic-
tures taken by participators to extract positions, sizes, and
orientations of objects on each floor. Combined with user
mobility traces, the Maximum Likelihood Estimation (MLE)
algorithm [190] can obtain the spatial relationship between
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Fig. 11. A taxonomy of applications.

adjacent landmarks for drawing the whole floor plan. By
applying computer vision and MCS techniques, Jigsaw can sta-
bly acquire landmarks with rich information and low overhead.
Jigsaw defaults that the incentive is supported by the service
providers. And the privacy preserving in collected photos is to
blur the contained customers’ faces. So the real-life adoption
ratio is in middle level as these two factors are considered in
implementation.

Nevertheless, only a series of photos is not enough for some
restricted areas where people cannot arrive. CrowdMap [191]
uses mobile phone video instead of pictures to get the sequen-
tial relationship from the consecutive frames of videos. This
system is divided into three stages: data collection includ-
ing spatial information, videos, and inertial data collection;
indoor path modeling including trajectory aggregation and lay-
out reconstruction; and final floor plan reconstruction. Similar
to Jigsaw, they assume that participators actively get involved
in sensing tasks, so several incentive mechanisms will be fur-
ther developed before deploying in reality. But this paper stops
at the research stage, which leads to a low real-life adoption
ratio.

There are also some people proposing geomagnetic fin-
gerprints rather than WiFi fingerprints [192], which is more
stable, more lightweight, totally independent to any wire-
less infrastructure. This proposed system is called GROPING,
which comprehensively integrates three implemented func-
tions: mapping, localization, and navigation. This system is
composed of the client side and the server side. In the client
side, each client provides collected data, as well as visualiz-
ing the constructed map, the current (estimated) location, and
the navigation routes. And the server side is built on cloud,
which consists of floor map building, location estimation, and
real-time navigation. The revised Monte Carlo Localization
(MCL) algorithm is applied to solve the mapping problem.
The incentive mechanisms applied range from monetary to
valuable services. And they recruit extra participators from
AMT, resulting in high adoption ratio.

Both WiFi or geomagnetic fingerprints mentioned above
belong to location-dependent fingerprints. MobiBee [193] pro-
vides a mobile participatory game to collect these fingerprints.
While scanning the QR codes posted on walls or pillars,
the corresponding WiFi RSS and magnetic field strength will
be uploaded. But in real world, to quickly get the reward
from requestors, some malicious participators will design some
tricks on these QR tags. Three attacks on tags used in MCS

project should be detected: tag forgery, misplacement, and
removal. Accordingly, Xu et al. [94] designs a fraud detection
mechanism. For the first attack, a truth discovery algorithm is
proposed to detect falsified data. And for the latter two attacks,
visiting patterns of participators can be utilized here. To bet-
ter support an accurate localization application in the future,
these detections are necessary to be applied as a protection
mechanism, leading to a high adoption ratio.

B. Urban Sensing

The data sensed from urban areas can reversely serve for
urban management, especially when a large amount of data
can reveal the tendency of urban development. On the one
hand, the analysis of these sensed data can contribute to traffic
or transportation management [194]. On the other hand, they
are also beneficial for infrastructure management, including
urban planning, local business management, and district man-
agement. Typical applications are discussed in this subsection
following these two aspects.

1) Traffic Monitoring: To generally monitor the traffic situ-
ation for all kinds of transportation, the GPS traces are always
chosen to be sensed. CrowdAtlas [195] uses an automated
road inference algorithm with GPS probes to rectify exist-
ing maps. The inference algorithm includes Hidden Markov
Model (HMM) map matching algorithm [122] to find the dif-
ference between the uploaded traces and the existing routes
on maps, and a clustering-based inferencing algorithm called
polygonal principal curve (PPC) algorithm [196] to update
these routes. This system can automatically solve the draw-
backs of existing digital road maps and update them in real
time. The participators in CrowdAtlas can choose to send only
unmatched segments to the server, reducing privacy exposure.
This system is attracted to users without Internet connections,
and users who want to customize their own travelling maps,
so the adoption ratio is high.

Another GPS-based application is traffic regulator iden-
tification. To find out all of the traffic regulators, such as
traffic lights and stop signs, the field survey on entire road
can provide detailed and accurate results, but the cost on
manpower or gasoline consumption cannot be neglected. In
SmartRoad [197], researchers tend to use statistical classifi-
cation techniques to process closely related GPS trace data
including trajectories and time and extract five features: final
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TABLE VI
SUMMARY OF APPLICATIONS (INC.=INCENTIVE MECHANISMS, S&P=SECURITY PROTECTION AND

PRIVACY PRESERVING MECHANISMS, AR=ADOPTION RATIO)

stop duration, minimum crossing speed, number of deceler-
ations, number of stops and distance from intersections. For
example, the stop durations between red light and stop signs
are different and have obvious patterns to be distinguished.
Combining the information aggregation and feature selection
schemes, they decrease the classification scenarios and reduce
transmission consumption. Moreover, the SmartRoad is pig-
gybacked on a navigation app, which requires zero user effort

for the setup and running. The incentive provided to participa-
tors is the free use of system services, like green routing. So
the adoption ratio can be high as they have claimed in their
paper.

After finding out these regulators, some traffic anomalies
can also be detected based on human mobilities [198]. Instead
of analyzing traffic volume and velocity on roads, the dif-
ferences between the real-time routing behavior and typical
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patterns can suggest the happening of some traffic anomalies,
like accidents, traffic control, protests, sports events, and disas-
ters etc. As the routing behaviors are denoted by the sub-graph,
the anomalies recognition can be processed by the map match-
ing method. In this paper, the social media data on the related
spot are also added to better explain the semantic meaning
of the events, which can increase the reliability of the final
result. But the incentive, security and privacy, and resource
optimization are all ignored in practical design, the adoption
ratio of this system is low.

However, for some GPS-less applications, researchers may
make use of special transportation, for example, bus. As
the traffic map of bus is fixed, if their travel time and
average speed are changing, the situation of traffic can
be easily detected. And only cellular signatures and audio
signals recording accelerated information are needed for
this calculation [199], which greatly save energy consump-
tion caused by GPS. To estimate the bus arrival time,
both drivers and passengers can report their nearby cell
tower IDs to analyze their routes on real-time and give
estimated arrival time feedbacks [200]. The MLE algo-
rithm is applied to do road matching and the bus stop
is detected by the clustering algorithm. Considering there
is no practical incentive mechanism or even company sup-
ported, the access to public transportation is difficult to get.
So the adoption ratio of this system is regarded at a low
level.

2) Infrastructure Management: With the proliferation of
private cars, the needs for parking spaces and gas stations
are constantly increasing. Even when you want to get off
the car and go to the nearby coffee shop, there is still
another long line waiting for you. To get rid of this frus-
tration, the crowd data collected in urban areas can be used
for infrastructure management. Accordingly, we will introduce
several typical applications related to infrastructure manage-
ment, like parking and refueling management, coffee shop
waiting time management, advertisement posting, and WiFi
AP deployment.

In our daily life, people often fail to know where the
best parking locations are and whether a parking place
will be available when they arrive. Some researches tend
to apply MCS methods into parking management, and try
to make the method agility, large-scale and low-cost [201].
Coric and Gruteser [202] use vehicles’ pre-installed parking
sensors and GPS locations to classify on-street areas into
legal or illegal parking spaces, then map them. It concerns
the street parking areas rather than professional parking lots
which are strictly controlled by certain corporations. Luckily,
MCS methods can provide more measurements for an accurate
construction. Lots of parking sensors can detect the distance
between the target objects on the parking spaces, which used
to distinguish the cars on the parking spaces with other objects.
Then the trivial analysis on this uploaded big data finally
gives feedback on real-time parking information. As the GPS
trace data will reveal real locations, the anonymous privacy
preserving method is applied. But there is no incentive mech-
anism design which makes the adoption ratio only at a medium
level.

To reduce the waiting time in refueling stations, the status
of nearby gas station should be notified to drives. However, as
the energy use data on the gas station is difficult to acquire and
estimate, few researches have done on this refueling problem.
But MCS methods make it possible. The GPS trajectories of
cars can detect gas station visiting rates and measure the time
spent on each station, through which the overall demand can be
estimated. If the fuel events data is sparse, Zhang et al. [203]
apply the context-aware collaborative filtering approach and
queue system to calculate the final rate. Depending on this,
the spatial-temporal fueling behavior can be analyzed properly.
According to their real-life experiments, they evaluate on the
road network of Beijing, China, which contains 106,579 road
nodes, 141,380 road segments, and 369,668 POIs. Together
with 30,000 taxicabs targets, we consider its adoption ratio as
high level.

Specifically, the LineKing [204] can also address the wait-
time detection in coffee shop scenario. The calculation of wait
time starts/ends from the proximity for users to enter/exit
the shop, which is periodically scanned by the Wireless
Access Points (WAP) around the users. The recruitment of
participators is only advertising on social media without mon-
etary incentives, so the adoption ratio can only be middle
level.

Traditional methods for advertisement posting on campus is
via flyers pasted on bulletin boards. But this way has limited
spatial-temporal coverage, lacking order and low search speed
problems. It is intuitive if we take these flyer form the physical
space to the cyber space, for collectively control and broad-
cast. Fliermeet [205] applies MCS to collect flyers in different
times and places, then cluster duplicated fliers to choose the
best picture as a representation, which will be reposted to the
Internet and broadcast all over the world. Considering that this
application can also be extended to any flyers in urban areas,
its adoption ratio is high.

Another concerning scenario is WiFi AP deployment man-
agement. Suitable distribution and configuration of open APs
at a city level are needed to build a better urban communi-
cation. Farshad et al. [206] recruit participators with mobile
phones traveling on public buses and collect WiFi interface
data. A cloud-based WiFi spectrum management service is
proposed for better interference management in urban area.
As the GPS data is also required in data collection, the lack
of privacy-preserving mechanism leads to a middle adaption
ratio of this work.

C. Environmental Monitoring

The recent discussion [207] has investigated some big data
derived applications in terms of environmental issues. It points
out the lack of mature solutions on the sensing cost, durability,
scalability, and interoperability of specially designed WSNs.
Although these WSNs have dense coverage on urban areas
in the daylight, some unattended areas like the air quality or
special scenery in suburbs, the noise at night, even the space
weather at the earth level are lacking in monitoring. To solve
these special cases, some researches [208]–[213] prove the
flexibility, scalability, and cost-efficiency of MCS techniques.
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For noise monitoring, NoiseTube [208], [209] is widely
used in MCS projects. It measures noise, localizes it, tags
it, and shows it on Google Maps in real time. Accompanied
by the provided questionnaires, the feedbacks on users about
noise can be added to get more information, like the rank-
ing questions can reveal the prioritization for the information
shown on the noise map. Towards large-scale adoption, the
privacy-preserving mechanism [214] leverages cryptographic
techniques and distributed computations in the cloud.

Further developed, researchers tend to survey on nightlife
patterns in urban areas. It can not only monitor sound and
light pollution at night, but also reveal economic opportuni-
ties and potential safety risks. Santani et al. [210] consider
both the self-reported data including images or videos labeled
manually and the data scratched from social media. Extracted
from all of these data, the places they usually hang out, the
corresponding social context and night life activities can be
extracted by the use of automatic ambiance features. Through
the practical report, the authors decide 100 CHF monetary
reward for each participator, and the uploaded data can only
be shared within the research group to protect data privacy
and safety. To optimize battery life, data transmission from
phones to the back-end server will only be performed when
connecting WiFi. As they are supported by the ethical review
board of Vaud and Zurich cantons in Switzerland, the adoption
ratio can be guaranteed.

For air quality monitoring, the mobile phones cannot do this
work independently as no equipped sensors have such a func-
tion. So an auxiliary equipment is designed [211], which can
upload data firstly to a mobile phone and get orders from it
through Bluetooth communication. Then an OpenIoT crowd-
sensing platform can collect data from mobile phones and filter
them to satisfy the suitable coverage rate. Because of this aux-
iliary device overhead, the adoption ratio of this method is
low.

And for a high-level space weather monitoring,
Pankratius et al. [212] propose the Mahali Project. They
aimed to analyze the electron density variations in the
ionosphere to get conditions of space environment. The
tomographic analysis based on the collection of GPS data,
which can acquire the total integrated plasma density between
a ground receiver and a transiting satellite. Compared with
the sparse coverage of weather monitors, this GPS acquisition
can be achieved by individual mobile phones, utilizing the
“division” idea in crowdsensing method. As the accuracy
based on this method is not high enough, we consider the
adoption ratio of this method is low.

If a special scenery in a city appeared (e.g., a beautiful view
or a geographical change), immediate detection can bring great
economic benefits for the city manager. Morishita et al. [213]
detect a beautiful “sakura” scenery through video sensing
by cars. This paper proposes a k-stage sensing strategy to
dynamically shorten the sensing intervals of these cars: once
the flowering cherries are detected, the nearby passing cars
have to sense at shorter distance intervals and narrow step
by step until the k requirement is reaching. After collecting
sensing pictures, the authors use histogram-based color analy-
sis and region-based fractal dimension analysis for accurately

detecting flowering cherries and their degrees. Nevertheless, as
the face information containing in pictures are not protected,
the adoption ratio of this method is low.

D. Social Management

As mobile devices have become an indispensable part of
our life, they can easily record the social behaviors of human
beings, including both motion and interactive status. As one
of the big portion in these records, enormous data from social
media and social networks can reveal individual or crowd char-
acters. If the target is on single person, her social data can
reveal her daily habits, preferences, or health conditions, etc.
While if the research targets a group of people, the social rela-
tionships even security issues can be revealed or predicted.
Correspondingly in this subsection, we category the social
management into three aspects: health care, social relation-
ship, and security monitoring, for the benefits of our daily
life.

1) Health Care: As we all know, the treatments for dif-
ferent patients have individual variability, especially for some
epidemic diseases. The big data is declared to give great help
on considering correct treatments depending on the analysis
of plenty of historical cases [215]. Although traditional clin-
ical trials can also find out the corresponding treatment, they
consume too much time and heavy efforts. So the collection
of information from numerous patients is the new solution
on health care. Taking tinnitus as an example, questionnaires
are provided to analyze the symptoms of patients and col-
lected the related environmental sound level to prove their
thoughts [215]. By doing this in a large range, these big data
can lead to more accurate treatments to patients. In the health
care domain, the privacy of patients is an important research
aspect, but this paper fails to give preserving strategy which
makes a low adoption ratio.

In addition to the professional clinical data gathered from
patients, health monitoring can be achieved by the commonly-
used wearable devices for large-scale ordinary users. These
devices like smart watches, glasses, rings, gloves, and helmets
are popular in our daily life. They are incorporated in clothing
or worn on the body to track or monitor the physiological char-
acters and make records or analysis. He et al. [216] develop
a fall detection system based on this kind of data collected
from a waist-mounted smartphone. Correspondingly, an auto-
matic Multimedia Messaging Service (MMS) will be sent as
an emergency treatment backup for pre-selected people. Time,
GPS coordination, and fall location are packed in MMS. As the
smartphone is readily available to most people, this application
is highly adopted.

Although these collected data can be of great help to
monitor our health status, the storage, computing and com-
munication limitations are still challenging for its appliance.
Ragona et al. [217] introduce a computing and communica-
tion offloading model to make a tradeoff between energy and
execution delay. The energy savings brought by this model
makes its adoption ratio to a high level.

2) Social Relationship: Compared with traditional ques-
tionnaires and auxiliary equipment carried ways, MCS applied
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in social relationship analysis is more accurate, objective and
humanized.

The interconnected nature of people and places is shown
by MCS data collection. The social diversity of urban loca-
tions can be captured through social networks. It also provides
opportunities to dig out the mobility patterns of participa-
tors [218]. The social diversity here indicates their social role
(whether it attracts diverse individuals or regulars). Correlating
with the wellbeing indicators of neighbourhoods, the rela-
tionship between the prosperity of people and places can be
analyzed, providing the suggestions on future urban polity or
socially-aware applications.

As one of the social relationship, friendship can be predicted
by similar moving patterns between two users. Location trails
dug out from a location sharing social network can be used
to indicate friendship [219]. Assisted by Facebook, privacy
preferences can be guaranteed, which makes a high adoption
ratio in real life.

This relationship between people and place can also be ben-
eficial for travel planning. Guo et al. [220] propose a three-step
planning:

• Activity preparation: For public activities, a heuristic
rule-based strategy is designed to initiate potential atten-
dees according to the group preferences. And for private
activities, a context-based group computing is applied for
group recommendation;

• Group activity mining: A generic group activity model
is trained to classify the characters and stages of group
activities;

• Activity suggestion: For both online and offline com-
munities, a cross-community mechanism is proposed to
extract the interaction features among them and decide
the final suggestion list.

For privacy preserving, the MobiGroup architecture in this
paper limits the length of the uploaded audio clips and the
feature extraction is processed locally. As the target of this
paper is a wide range of groups, the adoption ratio is high.

3) Public Security: The monitor on public security includes
a lot of aspects: emerging crimes, traffic accidents, emergen-
cies, and hazards. The related departments or sparsely covered
monitors ignore a lot of security problems in inaccessible
places. Typically, the related information for public-safety and
volunteer-initiated activities implied in social media data can
indicate security issues [221], [222]. Combined with these
online witnesses into traditional monitoring can decrease the
overall uncertainty and take protective measures on real-
time. To protect the privacy contained in sensing data, the
anonymization is considered and the adoption ratio is at a
medium level.

For sorely make use of these eye witnesses,
Ouyang et al. [223] design an event localization appli-
cation on smartphones. If the citizens have seen something,
they just need a swipe from their locations towards the
happening places. It seems like the steps are so easy to
perform, but the reported data can have significant meanings.
Clustering the big reported data, they can estimate the
exact place the events happened. Without the utilization of
cameras, the authors achieve a low-cost and near-continuous

monitoring of outdoor events, leading to a high adoption
ratio.

Considering that the big event held in a stadium can
easily suffer from potential safety risks caused by the
crowd congestion. Taking crowd stadium as an example,
Weppner and Lukowicz [224] fuse different Bluetooth-
captured crowd data and finds six relative features to collabo-
ratively make estimation: the average sum of distinct devices
discovered by all sensors in scan window, Bluetooth link struc-
ture, crowd movement, team-wise diversity, semi-continuous
unique devices, and average duration. By analyzing all of these
six features, the whole populated picture can be drawn for
this big stadium. As they evaluate the method on a big data
set during 3 days at the European soccer championship public
viewing event in Kaiserslautern containing thousands of visi-
tors, the adoption ratio is high. To further help event organizers
manage the venue with minimized risk, the Smart Stadium
Crowd Planner (SsCP) [225] can detect activity, position and
entrance/exit of spectators to/from a stadium fence. It designs
a Mobile Sensing Technology (MoST) for activity detection,
geolocalization, and geofencing (i.e., the capability of detect-
ing user proximity to a geographical location). As the SsCP
prototype is widely available for the Android system and sup-
porting 98% off-the-shelf devices. The adoption ratio of this
method can reach to the middle level.

VIII. TESTBEDS AND SIMULATORS

For the convenience of researching or applications, MCS
systems should be implemented on a comprehensive archi-
tecture across mobile devices and cloud computing platforms
with extensive supports to application developers and end
users. It will integrate the service-oriented architecture with all
necessary functions discussed in this survey paper: incentive
mechanism design, security protection and privacy preserving,
participant recruitment, task assignment, data collection and
processing. On the one hand, this architecture should dynami-
cally adjust the environment parameters depending on situation
changes to ensure enough sensing coverage and quality. On
the other hand, it should provide public interfaces to upper
applications which allow researchers to customize their own
sensing tasks. Even a visualized and generalized platform is
designed to relieve the heavy pressure on freshmen or human-
subject researchers. There are three kinds of architectures for
implementation: testbeds, simulators, and commercial service
platforms. As a testbed, it requires real-life collected inputs
and its outputs are working for practical application. While
for a simulator, simulated inputs are used to evaluate large
scale systems that cannot be realized in a testbed or proto-
type settings. And a commercial service platform is publicly
provided for MCS projects by an organization with its gen-
erality, profitability, and reliability. In this section, we will
present several typical testbeds, simulators and commercial
service platforms for the need of MCS researchers. They are
all summarized in Table VII, which compared by their present
usage status together with the available download links, sup-
ported functions and advantages. As we introduce these related
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Fig. 12. A taxonomy of Testbeds and Simulators.

work chronologically, the development timeline is shown in
Figure 12.

A. Testbeds

The earlier accepted testbed is Medusa [226]. It finds out
the requirements for crowdsensing and builds a whole pro-
cessing system from incentive design to automatedly data
collection. The recruitment of real workers is coming from
Amazon Mechanical Turk1 for further realize other function
parts. For simplifying the task assignment process, it designs
its own high-level programming language, called MedScript.
After that, testbeds proposed in the following years realize
different functions and have unique characters.

In 2013, McSense [227] and Vita [228] are introduced. For
McSense [227], the functions of it are more comprehensive.
Instead of the basic steps described in Medusa, it can also
evaluate participators’ performance including the achievement
ratio and completion time to give a suggestion on the next
task assignment step. So its assignment policy is depending
on the default parameter values or the previous results of
every sensing cycle. The implemented McSense mobile app
which has a simple graphical user interface (GUI) interaction
is installed by 44 participators who often visit the New Jersey
Institute of Technology (NJIT) campus in Newark and decided
to participate as potential workers. Additionally, the cus-
tomized platform of Vita enables intelligent deployments of
tasks between humans in the physical world, and dynamic
collaborations of services between mobile devices and cloud
computing platform during run-time of mobile devices with
service failure handling support. the outstanding point of Vita
is its developed ability where the APIs of this testbed are freely
provided to application developers and the third party service
providers to design their own crowdsensing environment [228].

All of these presented testbeds are two-side architectures:
the client side and the platform side. Here, the client side is
used to perform task receiving, data collection and uploading
tasks, while the platform side decides participant recruitment,
task assignment and collect sensing data. In 2014, a new
architecture named ParticipAct Living Lab is proposed [229].
It started within the city of Bologna and connected to the

1https://www.mturk.com/

students of the University of Bologna. As an on-going testbed,
it realizes three goals:

• It designs and tests for the genetic MCS system which
realizes the whole processing functions inside.

• It evaluates the machine-learning methods which are
useful for MCS systems on a large scale.

• It assesses the challenges to manage human resources in
MCS systems, and designs a less burden platform which
moves the recruitment and task monitoring process to a
third party, called MCS manager.

This testbed also gets extension on Cambridge, and MIT
university [230].

As the proliferation of big data mining, machine learning
methods have acquired wide attention. So in 2015, a machine
learning based testbed has come out. This CrowdML architec-
ture [115] integrates sensing, learning and privacy preserving
together, where the optimal parameters are automatically cal-
culated by the collected data using the Stochastic Gradient
Descent (SGD) function rather than customizing them manu-
ally. Also, a user-centric design style has been used to build
an Internet of Things (IoT) testbed for smart buildings this
year [231]. It equips a lot of incentive mechanisms to guaran-
tee participators profits. The users can declare their preferences
on different situations, actively receive acceptable incentive
offers and execute sensing tasks.

But as pointed out before, GUI interfaces are beneficial for
fresh or social-study researchers. So, in 2016, LiveLabs [232],
TA$Ker [233] and Sensurs [234] all have their well-designed
GUI interactive interfaces. While the LiveLabs can give a
detailed and visualized experiment feedback, Sensus designs
a GUI-based sensing plans instead of the programming pro-
cess. They both are easy for new researchers to perfect
their crowdsensing experiments. Especially, Sensus is a cross-
platform, general-purpose design for MCS-based human-
subject researches. A controversial design in this testbed is in
worker recruitment. Users in Sensus typically post advertise-
ments in conspicuous places offline (e.g., outside of clinics
or schools) and online (e.g., Web forums). Participants who
are interested in the topic will connect with the researchers
via mail, telephone, or e-mail. Although it can select the high
quality of participators from the face-to-face meeting between
volunteers and requestors, it is time-consuming for a large
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requirement on participant population. For another testbed,
the task bundling, differential pricing and cheating analytic of
TA$Ker can be more helpful in practical applications which
is designed, developed and experimented with a real-world
mobile crowd-tasking platform on Singapore Management
University (SMU) campus.

In 2017, more specific problems are solved in new testbeds.
These new testbeds are built based on previous ones so the
basic functions and visualized characteristic are inherited. To
deal with the imbalance distribution of sensing data, a hybrid
testbed called HySense is proposed [235]. It not only integrates
the mobile sensing data with static sensing data to solve the
data-sparse problem, but also migrate the redundant users from
densely populated places to sparse ones.

In 2018, enhanced testbeds are invented. Take VIVO [236]
as an example, it is an enrolled crowd-sensing model, which
allows the simultaneous deployment of multiple experiments.
The privacy and data security are preserved before the data
leaving the devices. The collected data can be then processed
either offline after gathering together, or online in real-time.
This testbed is implemented by distributing an experiment to
40 volunteers scattered over the whole Switzerland.

B. Simulators

The lacking in large-scale real-life sensing data sometimes
limits the construction of testbeds. Simulators are derived to
prove the feasibility or efficiency of designed MCS frame-
works by taking the input of simulated data.

Matador [237] proposed in the year of 2013 designs for
the task assignment and data collection steps. Its assignment
language is XML with the construction of “Context + Action”.
And it presents relevant tasks to users and commits to preserve
the battery life of mobile phones. This energy-efficient context
sampling algorithm is validated with a small scale field study
where only one user carries the mobile phone and drives on
the road, showcasing the potential of the proposed solution.

Hu et al. [238] claim that the consideration on context
can bring a better understanding of users’ situations, leading
to a better allocation and energy-efficient execution on sens-
ing tasks. So they propose a Mobile Context-aware Platform
(MCP) depending on Vita [228], which can provide environ-
ment and services for users’ participation and suitable task
assignments depending on specific contexts. Low computa-
tional and communication overhead makes it efficient as a
simulator.

In SpecSense [239], considering the cost on RF sensors
which are used to monitor spectrum occupation is high, this
system gives a sensor selection algorithm to choose few suit-
able sensors to solve the overhead problem with the limit
of sensing coverage. Although the incentive mechanisms are
used, inadequate sensing opportunities sometimes come out,
especially for some sparsely populated areas. Furthermore, the
CrowdSenSim [240] is specially designed for realistic urban
environment simulations. It concludes the participant selec-
tion, data collection and process. Finally, it can give the visual
result on the real urban mapping, which will be a great help
for urban planners and decision makers.

C. Commercial Service Platforms

Except for these testbeds and simulators in the research area,
there are also some available platforms provided by commer-
cial organizers. We also summarize them in Table VII. The
typical examples are Gigwalk and Streetspotr.

Gigwalk [241] was founded in 2010 with the goal of rein-
venting work in a mobile world. This Gigwalk infrastructure
supports the MCS task publish, monetary reward payment,
real-time data collection from requestor side; and task accep-
tance and execution, sensing data upload, privacy preserving
and reward earning from participator side. It is founded by
several investors including Nokia Growth Partners (NGP),
August Capital, Harrison Metal etc. As it has solid investors,
the service it provides is more trustable and easy to be
implemented.

Streetspotr [242] has provided services in qualifying and
engaging MCS for over 5 years. It basically provides a
platform for task publish, execution, incentive and security
protection and privacy preserving. The spotlight is its best-in-
class data analytics dashboard. They create and continuously
improve this analytics dashboard which illustrates all main
insights from the data collected through the crowd in real-time.
After applying their immense filter capabilities (postcodes,
Nielsen areas, retail channels, store sizes, distribution center),
requestors can easily screen the individual KPIs at a glance,
where only simple downloading can realize plenty of formats
they need.

IX. CONCLUSION, LESSONS LEARNT, AND FUTURE

RESEARCH DIRECTIONS

A. Conclusion

Our survey filters out the related work in the five aspects of
crowdsensing. We follow the processing framework of MCS
tasks to introduce these five aspects, including incentive mech-
anism, security protection and privacy preserving, and resource
optimization strategies in MCS data collection; MCS data
analysis; and MCS applications. Then we show the avail-
able testbeds and simulators for MCS tasks. After all relevant
papers are introduced, the taxonomies and the comparison
tables attached on each section can help readers understand
them from a global view.

B. Lessons Learned

Although we discuss MCS by separated sections, they actu-
ally are combined as an entire entity. Only when all of these
parts work together can realize their own values. In the era of
data explosion and the growing of AI, MCS provides a sys-
tematical structure for data collection, analysis, to application.
The MCS makes it possible for a large quantity of data applied
to create a better life. Separately, some lessons learned from
above-mentioned sections are as follows:

• As the involvers of MCS systems are most human-beings,
their willingness should be aroused by incentives and
their privacy and data security should be preserved. It
implies that for any human participant experiment, human
rights should be well protected with a specially designed
mechanism.
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TABLE VII
SUMMARY OF TESTBEDS (INC.: INCENTIVE MECHANISM; PRI.: SAFETY AND PRIVACY PRESERVING; PS: PARTICIPANT SELECTION; TA: TASK

ASSIGNMENT; DC&DP: DATA COLLECTION AND PROCESSING)

• To build a more “real” MCS system, that is, a high
adoption ratio in our daily life, the computational capa-
bility, transmission resource, and budget limits cannot be
ignored. The balance between low cost and high quality
should be emphasized in strategy design.

• Dealing with large quantity data, some falsified, redun-
dant, and missing data should be filtered or fixed first.
Both the quantity and the quality of data should all be
guaranteed for further application.

Besides the existing work introduced in this survey, there are
still some challenges as well as future research directions dis-
cussed in the following subsection, which we hope to provide
some possible selections for new or experienced researchers.

C. Future Research Directions

We suggest three future directions enhanced from MCS,
targeting on data collection, analysis and application aspects
respectively. The first direction is the customized design
for data collection. As for safety and privacy protection,
the “user-centric” concept can be applied to design more
customize-available preserving systems. On the one hand,
users can freely decide the running time of preserving systems
and the preserving degrees. On the other hand, heteroge-
neous organizations have different levels of requirements. For

example, the large corporations have higher requirements on
reliable data protection mechanism than small corporations,
as they have more clients’ expectations. Actually, as another
popular technology these days, blockchain [243] can also
be incorporated into crowdsensing. As the basic structure of
Bitcoin [244], blockchain have the mutual system for token
money. If we record the contributions of different participa-
tor on blockchains, it can support a token money rewarding
system for these users. These contributions should be recorded
as an unalterable and irrevocable way, which is the superiority
of blockchain.

The second direction is the light-weight MCS data anal-
ysis, like applying machine learning into micro-devices. In
the Internet of Anything (IoA) [29], the light-weight devices
are employed in MCS systems. However, they have a lot
of operation limitations: low ROM and RAM storage, low
CPU frequency, low network bandwidth support etc. The pre-
processing algorithms applied on these devices (e.g., deep
learning model) should be designed as light-weight. For
instance, as declared in DeepMon [245], the convolutional
layer consumes most processing time for image modeling. A
cache-based background filter algorithm is applied to optimize
the pre-trained model to a lighter level. But in design, the
tradeoff between shrink program and corresponding accuracy
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loss should also be considered carefully. For another perspec-
tive, we recommend the combination of crowdsensing and
edge computing. The edge computing will decompose the
large processing service handled by the central platform to
smaller and easily managed parts. These parts will be scat-
tered to the edge node, which is called cloudlet. Different
from the cloudlet in [155], what we mentioned here is more
like a sub-platform. It is closer to the user terminal device, so
it can speed up the data processing and transmission speed,
reduce the delay and release the processing burden of main
servers. User terminals, cloudlets and main servers can con-
struct a heterogeneous system to process big data step by step,
where suitable cloud resources are assigned according to their
specific offload situations [246].

Moreover, mobile crowd sensing and computing (MCSC)
can be also introduced to data analysis enhancement. This defi-
nition is proposed by Guo et al. [247], presenting the fusion of
human and computer intelligence. The flexibility and scalabil-
ity supported by human side can lead to extending coverage,
while the computational ability provided by computers can
solve the big data process limitations in human-side devices.
We trust this win-win strategy can be the main scheme of MCS
design in the future. Besides, the human-enabled mobile MEC
mentioned in Section II-A can also be further researched for
better resource provisioning and optimization.

The third direction is to extend MCS applications to IoA.
According to the discussion in Section VII, most of the appli-
cations are benefit from data collected from mobile phone,
including sensor data or social media data. As the prosper-
ous of IoA, data from anything can be accumulated and make
some change to every aspect in our daily life. The mobile
phone plays an important role as an intermediate node to col-
lect the data from crowd sensors, which is also implied as
the life extension of these sensors [248]. Every social envi-
ronment like offices, restaurants, hospitals, cinemas, and so
on, can become the targets of MCS projects. For example,
an intelligent coffee breaking plan can be made by MCS in
offices. The coffee machine can record the timestamp of every
new cup making, where the rush hour of coffee making can
be calculated. Assisted by the workers’ mobile phones, the
waiting time to make a coffee and the location of the coffee
room can be uploaded. Combining these two collected data,
valuable suggestions can be given for the most efficient time
to make a coffee, even for coffee machine maintenance.

MCS technology can help to execute heavy sensing tasks in
the big data era. There are still a lot of blanks on this research
field needed to be filled. As it can also be integrated with other
techniques, we believe that the further dig out on the potential
of MCS can make it as a very powerful sensing technology
in the future.
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