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Abstract—Smart devices (e.g., smartphones or tablets) have
become an indispensable part of our daily lives for conducting
mobile payment transactions, and storing both corporate and
personal sensitive data. As a result, unauthorized access to smart
devices can result in a catastrophic security breach. Lock screen
provides the first line of defense against unauthorized access to
smart devices, where users typically use the PIN, the pattern
of drawing, or biometric to unlock their devices. Unfortunately,
recent studies have revealed that individual unlocking methods
are insufficient to prevent unauthorized access to smart devices.

In this paper, we aim to increase the security barrier of smart
device unlocking. We present the CP3, a combined unlocking
framework to achieve highly secure and usable authentication
for commodity smart devices. We address several challenges of
combing unlocking methods from different modalities, such as
the high reliability and low latency. We implement a prototype
of our approach based on the Android platform, which selects
the fingerPrint authentication, bluetooth transmission Power
authentication and facial Pattern verification as our typical
Combination for the secure unlocking. We have made the source
code of our implementation public1. Real-world experiments
demonstrate the effectiveness of our solution. CP3 achieves 88%
accuracy and 2.88s operation latency, which guarantees both
good user experience and high security level compared with
existing methods.

Index Terms—Smartphone authentication; Combined unlock-
ing; Fingerprint; Auxiliary authentication; Facial recognition

I. INTRODUCTION

Smart devices (e.g., smartphones or tablets) are becoming

attractive targets for attacks as they are increasingly storing a

tremendous amount of sensitive information [1]. Unauthorized

access to smart devices may lead to catastrophic security

breaches in the case these devices get lost or stolen. A

Pew study from 2017 reported that 72% of people in 17

advanced economies like North America and much of Europe

depend entirely on a smartphone to access online services

and information [2]. An attacker could steal usernames and

passwords used to access apps and online services extracted

from a smartphone, resulting in personal information disclo-

sure and legal consequences, etc. For example, numerous cases

of celebrities losing their phones with private photos and

secret information have been reported on the news. According

to a Gartner group forecast [3], the global mobile payment

applications will get over 450 million users and a transaction

value of over US$721 billion by the end of the year 2017.

Adversaries that gain unauthorized access to smart devices

1https://goo.gl/oUwSfZ

may jeopardize banking and payment information stored on

these devices, leading to significant financial losses.

Locking screen provides the first line of defense against

unauthorized access to the contents of a lost or stolen smart

device. Typically, it requires a secret code (e.g., PIN, drawing

a pattern, or biometric) to gain access to their devices [4].

Unfortunately, recent studies have revealed that individual

unlocking (i.e., authentication) methods are insufficient to

prevent unauthorized access to smart devices. The shoulder-

surfing attack can acquire the secret code directly by obser-

vations, especially for traditional texture passwords, PINs or

patterns [5]. Smudge attack succeeds in bypassing pattern-

drawing authentication, where the oily residues left on the

screen will be simply captured to guess the true secret code

[6]. Even the fingerprint authentication, which is the most

popular unlocking in shelved smartphones, can be broken by a

simulated finger model created by hackers in Chaos Computer

Club [7].

Biometrics-based unlocking (e.g., fingerprints, face [8],

voice or eye patterns [9, 10], gait and gesture behaviors

[11, 12]) has attracted considerable attention recently due to its

uniqueness and thus high immunity to the accurate replication

by adversaries [10]. However, like the heart-beating [13] or

breathing authentication [14], they are not practical for mobile

users. And authentications like Eyeveri [10] or key-stroke

based identification [15] have long operating latency to achieve

high accuracy.

To increase the security of individual unlocking, Saevanee et
al. proposed the combined authentication [16]. They designed

a multi-modal behavioral biometric authentication system to

overcome the weaknesses of individual protections. Despite

different concepts of the combined authentication [17, 18]

have been proposed in recent years, there still exist challenges

that hinder the practical usage of such techniques. Firstly,

selected methods for combination should be diverse. For

security enhancement, combined authentication should have

more than one input to defend against more attacks. Authors

in [18] chose different methods only based on one input.

The face, periocular and iris recognitions make use of one

image to get three results. The adversaries can break the whole

authentication simply by attacking this image. Secondly, the

protection on smart devices should also continue when they

have been unlocked. To the best of our knowledge, there

is no combination can monitor devices after the unlocking

process. Thirdly, average operation delay should be acceptable
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for users. Former studies have ignored this practical require-

ment. In [16], authors select behavior, keystroke and linguistic

profiling to combine pursuing the high accuracy. Nevertheless,

the operation on this authentication requires three behaviors

(walk, tap and speak), which will waste too much time on

input and make it unpractical for unlocking.

To address the above challenges, in this work, we introduce

a new unlocking design to increase the security barrier of smart

device authentication, named CP3: a Combined unlocking pro-

tection including fingerPrint authentication, Bluetooth trans-

mission Power authentication and facial Pattern verification.

The contributions from this work are summarized as follows:

• We propose a new combined unlocking framework to

achieve a highly secure and usable authentication for com-

modity smart devices. Our design not only defends against

various unlocking attacks (including forgery attack, hacking

attack and snatch attack, etc), but also reduces the complex-

ity and latency on combined authentications.

• We exploit and present a new Bluetooth authentication

method making use of equipped devices for unlocking.

Transmission powers are modulated as the covert channel to

avoid wireless eavesdropping, and the background periodical

detection ensures that unauthorized users cannot access to

the device even after the legitimate user has unlocked it.

• We implement the CP3 prototype on Android platform and

make the source code of our implementation public. Real-

world experiments achieve 88% authentication accuracy and

2.88s operation latency, which prove the feasibility of our

solution.

II. RELATED WORK

There are various unlocking methods to protect smart de-

vices, while bringing new attacks also. In this section, we will

discuss related work about unlocking schemes and attacks.

A. Unlocking Schemes

Generally, there are three unlocking schemes: traditional

authentication, biological authentication, and auxiliary authen-

tication. Developments have been made in each scheme, but

shortcomings still exist.

Traditional Authentication. It is considered as “what you

know” authentication scheme. Traditional authentication in-

cludes texture passwords, PIN codes and the Android Pattern,

which are most likely exposed to various adversaries [19].

XSide [19] exploits the front and the back of smartphones

to enter stroke-based passwords. This design can enhance

such authentications resistance to shoulder surfing. To avoid

taping both on the front and back, PassMatrix [20] leverages

a graphics-based login indicator. This indicator randomly

generates pass-images, to achieve higher security and easier

operation. While they enhance the security against the shoulder

surfing, the hardware overhead cannot be neglected and they

provide little resistance to the smudge attack.

Biological Authentication. It is considered as “what you

are” scheme. Biological authentication recognizes and unlocks

smart devices based on biological features, such as finger-

prints, face [8], voice or eye patterns [10], gait and gesture

behaviors [11, 12]. Recent studies have shown that they are

vulnerable to imitating attacks [21]. To avoid this, EyeVeri

[10] captures eye-movements and extracts gaze pattern for

access. However, the use of EyeVeri is limited by its un-

neglectable time delay, which can last more than 5 secs to

achieve better accuracy. Key-stroke based authentication [15]

exploits tapping strength on the screen which claims difficult

to be copied. More than 30 profiles should be manually

input which brings a complicated setting process. Additionally,

CardiacScan [13] provides a novel approach to implement

continuous heart-based user authentication. Also in [14], the

users’ breathing gestures are used as a biometric signature. But

such authentications are not practical for current smartphone

users.

Auxiliary Authentication. It is considered as “what you

have” scheme. Authentication based on auxiliary devices is

newly proposed in recent years. The paper [22] firstly studied

using a smartphone to control the lock/unlock status of other

smart devices, i.e, smart doors or smart watches, by Bluetooth

transmission. But the instructions transmitted are just put in the

plain text in Bluetooth packets, which will be hacked easily.

Besides, IAuth [23] records behavioral characteristics through

smart watches to verify the identity. But its training overhead

cannot be ignored.

B. Unlocking Attacks

With the development of unlocking methods, more new at-

tacks are also proposed. At first, shoulder surfing is considered

as the most direct way to break the unlocking system [5]. The

paper [24] gives an improved WiFi influence attack, but this

attack is not stable, as the WiFi signals can also be disrupted by

other body movements except finger moving. A more accurate

video based attack is studied. It constructs a pattern password

simply by analyzing the filmed finger footage [25, 26].

For auxiliary authentication, the typical attacks are hacking
attack and eavesdropping attack, which aim to take control

of any side of the device or listen on the legitimate channel.

Especially for Bluetooth communication, hackers will adapt

malformed objects, which can control the victim’s device to

list the attackers’ device as the trusted pair device [27]. They

will also eavesdrop on a legitimate transmission to learn the

password in a second, which is a completely random 64 or

128-bit key [28].

For biological authentication, forgery attack [7] and imi-
tating attack [29] are widely used. The forgery attack is to

acquire secret codes from known clues, like a simulated finger

model generated from the fingerprints left somewhere else. It

has been used by Chaos Computer Club to break fingerprints

authentication [7]. And the imitating attack can mimic users’

manners including gait patterns, eye movement patterns, or

touch gestures [29].

From the above discussions, single authentication is not

secure enough against various attacks. Combining multiple
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methods for higher performance is becoming another dimen-

sion for safely unlocking. In addition to PIN codes, the authors

in [17] collect physical status, i.e, acceleration, pressure, time

features when tapping. It assumes the consistent behaviors for

users which is difficult to achieve in reality. The multi-model

authentication proposed in [16] combines three biometrics:

voice, facial features, and signature, but the problem lies in

its unacceptable time delay. The framework in [18] makes an

improvement by allocating weight factors to biometrics. The

leverage on one image for three recognitions (face, periocular,

iris) leaves this image as the simple target to be compromised.

So, the low level of security and the bad user experience are

important barriers to the currently combined authentication,

which are also our motivations for this paper.

III. ATTACK MODEL AND DESIGN GOALS

In this section, we describe the threat model of this work

and further discuss the design objectives of CP3.

A. Attack Model

We consider that an adversary wants to access the sensitive

information and controls privacy-concerned applications on

a target device which is protected by CP3. We concern the

following six different attacks that may bypass mobile device

authentications:

• Brute-force attack: The adversary tries every possible

combination of passwords to bypass the secret code based

authentication [30].

• Fingerprint forgery attack: The adversary will get finger-

prints left on somewhere else and make a simulated model

to fool the fingerprint authentication [7].

• Facial forgery attack: The adversary uses a forged image

(i.e., using a previously used photo to substitute the true

facial patterns) to fool the face authentication [31].

• Snatch attack: This attack specially works when the device

has been unlocked. The adversary may directly snatch the

device when the owner is using it [32].

• Eavesdropping attack: The adversary will monitor the

transmission on legitimate channel all the time to get packets

that contain private information [28].

• Device hacking: The adversary tries to control the Blue-

tooth devices for executing designed commands [27].

We also assume that mobile applications on the target device

are trustworthy. It is free of spyware, password modified capa-

bility and algorithm vulnerability. For example, no password

attack application is pre-installed and the devices are not

equipped with spied hardware. In addition, we assume that

attackers do not know the exact combined methods before

attacking and cannot try infinitely without being perceived by

legitimate users.

B. Design Goals

Under the above attack model, we have three security goals:

• Defeat any individual unlocking attack that attempts to

circumvent the smart devices authentication.

• Improve the robustness against potential combined attacks

by increasing the difficulties that an attack could bypass the

authentication.

• Achieve continuous authentication of smart device users to

defend against snatch attacks.

To achieve our security goal without compromising the

authentications usability, we identify the following design

objectives for developing a secure and usable combined un-

locking scheme.

• Diversity: There should be more than one input for the

whole authentication. Unlike the paper [18] introduced in

section II-A, one input image will be the target for attackers

to simply bypass the authentication.

• Low latency: The simple combination of multiple authenti-

cations inevitably increases the operation time of authen-

tication. The authentication in [16] requires all walking,

tapping and speaking profiles, which causes an extremely

long latency. So a practical combined unlocking scheme

should be time-efficient and user-friendly.

• Continuous authentication: To the best of our knowledge,

existing combined authentications [16]-[18] do not protect

the smart devices after the unlocking process. In case of

snatch attacks, the continuous monitoring is necessary to

detect and react immediately to block attackers when using

devices.

IV. DESIGN OF CP3

In this section, we first introduce the rationale of combining

different unlocking methods in CP3. We then present the

design overview, followed by the detailed description of key

components, including the Bluetooth based auxiliary authen-

tication and facial pattern verification.

A. Design Choices

In CP3, we combine three different methods to prevent

unauthorized access to smart devices: 1) fingerprint authen-

tication; 2) Bluetooth based auxiliary authentication; and 3)

facial pattern based authentication. We make these design

choices due to their favorable features for practical deploy-

ment, including low overhead/cost, high accuracy, and short

latency. Firstly, all these three methods are readily available

on commodity smart devices. For example, mobile phones are

typically equipped with standard fingerprint sensors, Bluetooth

interfaces, and cameras. Thus, our approach will not incur

extra equipment overhead/cost. Secondly, these methods can

individually achieve high detection rates. For instances, deep

learning based fingerprint and facial recognition algorithms

are recently shown to be quite reliable [8, 33]. In particular,

we exploit pre-processing techniques in facial recognition to

further reduce possible inaccuracies. For the Bluetooth based

authentication, we utilize the covert channel in Bluetooth

communication to improve its security. Thirdly, these methods

individually incur reasonable latency, which guarantees the

usability of our CP3. We seamlessly integrate them to achieve

a secure and usable unlocking scheme, where the user-side

operation is a simple touch on the fingerprint sensor while
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Fig. 1. Authentication process in CP3

watching the screen. In Section VII, we report the accuracy

and latency of experimental results and demonstrate the fea-

sibility of our design.

B. System Overview

An unlocking scheme is normally composed of two stages:

setting stage (e.g., data collection and feature extraction) and

authentication stage, which are introduced as follows.

Fig. 2. Setting steps in CP3

1) Setting: When a user initiates CP3 at the first time, there

are three setting steps as shown in Fig. 2:

• Fingerprint settings: It first collects the user’s fingerprints,

e.g., sampling center and edge fingerprints for three times.

• Bluetooth initialization: It then asks the user to specify

her secret power token (e.g., k-bit key), which will be

transmitted via the Bluetooth covert channel from the aux-

iliary device to the master device for authentication. We

use the standard Bluetooth low energy (BLE) mode. The

authentication device is referred to the master device, and

the auxiliary device (e.g., a smartwatch) is referred to a

slave/peripheral device.

• Facial record setting: The user finally uploads at least one

clear portrait photo or takes a camera photo using the mobile

device (glass wearing is acceptable for authentication).

2) Authentication Process: Fig. 1 illustrates the authentica-

tion process in CP3. There are three parallelled threads in the

authentication process. Once the fingerprint sensor is triggered,

the camera captures the user’s facial images. Meanwhile, the

Bluetooth module begins to send authentication messages and

wait for feedback. For the thread 1, when capturing an input

from the fingerprint sensor, we compare the input fingerprint

with the training dataset. If their difference can be accepted,

CP3 returns True feedback on the first authentication, and

then passes the result to the final decision center.

For the thread 2, the master device modulates the trans-

mission power of Bluetooth broadcasts depending on the pre-

specified secret power token. This modulation is considered as

the convert channel to convey the token message. The auxiliary

device continuously scans the wireless channels to receive any

broadcasts from the master device. Received signal strength

of the broadcast messages will be analyzed to decode the

secret token. If the decoded token matches with the recorded

one in the setting stage, the True feedback for Bluetooth

authentication will be sent to the master device.

For the thread 3, the camera catches three frames of the

portrait photo as its input. Through our facial recognition

algorithms, two conditions are analyzed: (i) if the differences

among three captured frames are below an empirical threshold;

and (ii) if the captured frame matches the pre-stored pictures

in the setting phrase. If they are all satisfied, the facial

authentication returns the True feedback.

If three feedbacks are all True, the device will be unlocked.

Otherwise, the authentication process fails.

C. Secure Bluetooth Based Auxiliary Authentication

CP3 uses a covert channel to convey the secret token by

modulating the transmission power of Bluetooth messages,

which can hide the token deeply into normal traffics [34]. On

the master device, the specified transmission power sequence

(i.e., secret token) is represented as a k-bit key (e.g., a 5-bit

token 01001 means “low, high, low, low, high”), which will

be modulated on k broadcasts. Then, the feedback will be

received from the auxiliary paired device.

We use the Received Signal Strength Indication (RSSI) to

measure the received power at the auxiliary device. After

receiving k broadcast messages, the auxiliary device gets k
RSSI values (δ1, δ2, ..., δk). CP3 firstly calculates the arith-

metic mean δ of these k RSSIs. If δi > δ, it is then considered

as the high level (i.e., bit 1) and smaller ones are the low level

(i.e., bit 0). By comparing the final decoded result with the pre-

specified secret token, we obtain the authentication output.

Continuous Authentication Support: Our design inherently

supports continuous authentication and thus can defend against

the snatch attack. For example, the Bluetooth communication
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module runs as a background thread, and periodical detects

the presence of the master device. Any failure can cause the

immediate locking on the screen.

D. Efficient Facial Pattern Based Authentication

The facial pattern verification process is composed of four

steps: 1) face detection, 2) position transformation, 3) face

encoding, and 4) the final classification.

Face detection. This step is mainly to get the basic structure

of a face from a photo. To avoid the influence of lightness, CP3

firstly changes the color photo to a gray-scale map. Histogram

of Oriented Gradients (HOG) is then used [35] to find the face

area passed to the next step. It focuses on every single pixel

and its surroundings. The gradients between them are denoted

by the directions of arrows, directing from a lighter pixel to

a darker one. In particular, to reduce the analysis delay, CP3

partitions the image into 16×16 small squares and selects the

“strongest” arrow which appears most to represent this square.

The HOG figure of a face can be presented by these arrows,

and then the face will be detected by comparing to the known

HOG patterns in the setting stage.

Position transformation. It is inevitable that the faces in

some photos are not towards the center. Making use of face

landmark estimation [36], the problem can be simplified to

locate 68 face landmarks in photos. No matter which direction

people look, the relative positions of eyes and mouths will

not change. Actually, the process of finding landmarks is a

regression process from appearance to the basic shape. So

the main purpose is to train a regressor using gradient tree

boosting algorithm.

We next transform these positions to the center. Instead of

fancy 3D wrap, which will introduce distortions to the changed

pictures, CP3 uses affine transformations including rotate,

scale and shear to preserve parallel lines. Such transformation

can improve the accuracy of the next measurement.

Face encoding. This step extracts features for deep learn-

ing based classification. We use a deep convolutional neural

network for model training and get the face encoding. For

instance, CP3 uses the OpenFace [37], a widely used tool for

deep learning based facial pattern classification, to get 128

measurements for our input images. It encodes a face image

to a series of numbers.

Final classification. CP3 uses a linear SVM classifier [38]

to find any match in the database for authentication. This step

only takes milliseconds from input to classification output.

V. IMPLEMENTATION

To demonstrate the feasibility of our approach, we have im-

plemented a prototype, which uses multiple off-the-shelf tools

and libraries on Android platform. Our prototype is developed

on Android Studio 2.3.3, where the compile sdk version is 21

and the build tool version is 25.0.0. In this section, we present

key implementation aspects in our prototype. We also provide

the source code of our implementation2.

2https://goo.gl/oUwSfZ

(a) Fingerprint Set (b) Bluetooth Set (c) Facial Set

Fig. 3. CP3 user interfaces in the setting stage

A. CP3 Prototype

We use a mobile phone equipped with Android 6.0.1 system

(API 23) and Bluetooth 4.2 version as the master device.

For the auxiliary device, we use a smart watch equipped

with Android 5.1 system (API 22) and Bluetooth 4.0 version.

For the Bluetooth communication, the transmission range is

around 10 meters, and the channel band is ISM 2.4GHz. Its

transmission power has four levels: -18dBm, -6dBm, 0dBm

and 3dBm. In our prototype, we only use the low level (i.e.,
-18dBm) and the high level (i.e., 3dBm) to modulate broadcast

messages for the covert channel communication.

Fig. 3 shows the user interfaces for the fingerprint setting,

the secret power token setting, and the facial pattern setting,

respectively. In this prototype, the Bluetooth authentication

frequency is 3 minutes once and the secret power token is

a 5-bit key. In the authentication stage, once the fingerprint

sensor captures any input, the fingerprint, Bluetooth and facial

pattern recognition threads start in a parallel manner:

• Fingerprint. The implementation of fingerprint function is

based on the built-in fingerprint package (i.e., four classes

in FingerprintManager) provided by Android platform.

• Bluetooth. RepeatSendActivity is in charge of sending

modulated broadcasts and receiving the feedback from the

auxiliary device. We use timer-based scanning to implement

the continuous monitoring.

• Facial pattern recognition. We develop three activities for

the face authentication: FaceInitialization, FaceRecognition
and FaceVerification. The implementation of recognition is

based on the offline Face++ package and SVM package

provided by Android platform.

B. Permission Request

Considering the dynamic permission request from Android

6.0, we need the following permissions set by users (permis-

sions only need to be given once at the initial phrase of CP3):

• Positioning permission: Bluetooth communication concerns

about the location information. Only when such permission

is given, the Bluetooth module can work.

• Floating window permission: To shield HOME button, we

design the interfaces of our app on floating windows. But

Android adds this permission to prevent rogue software

occupying the screen maliciously. Thus, we need to ask

users to give this permission.
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Fig. 4. CP3 vs. Individual Authentication

• Camera permission: The camera access permission should

be enabled so as to capture facial pictures.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CP3 com-

pared with three individual authentications. We ask 15 vol-

unteers, including 10 males and 5 females, to test each

authentication method for 20 attempts, including 10 attempts

for the true positive test and another 10 attempts for the false

positive test. Our experiments aim to answer the following

questions:

• Does our approach incur a large authentication delay, com-

pared with other individual baseline authentications?

• How about the detection accuracy, including the true positive

rate and false positive rate?

• What are the impacts if we allow multiple attempts in the

authentication process?

A. CP3 vs. Individual Authentication

In this experiment, it allows only one unlocking attempt

per authentication. That is, if a user does not pass any of the

individual authentications among fingerprint, Bluetooth and

face, the authentication is failed. The true positive rate (TPR)

in this subsection is defined as the value that the number of the

true feedback for true inputs divided by the number of true

verification. The false positive rate (FPR) is also defined as

the value that the number of the true feedback for false inputs

(i.e., wrong fingerprints, wrong transmission power, and fake

facial images) divided by the number of false verification.

For fingerprint verification, each participant is required to

record one finger in the system. To test the TPR, each partici-

pant presses the same finger on the sensing area for 10 attempts

to see the result. Evaluations show that the recognition rate

achieves up to 96%. For the FPR, each participant presses a

different finger on the sensor. For instance, one records the

index fingerprint but presses his ring finger on the screen.

It shows that FPR is as long as 1.33%. We record the

authentication delay for each correct recognition. The average

authentication time (AAT) is around 0.8s.

For Bluetooth verification, participants are required to cus-

tomize their own transmission power and start to test the

unlocking results. The AAT of this method depends on the

distance, as shown in Fig. 4(a). Longer distance will increase

the transmission time on Bluetooth communication. According

to this, we ask volunteers to wear the watch on the left hand

and hold the phone in right hand, keeping an average distance

40 cm between two devices. The corresponding operation

time is 2.763s. From the test results, we get TPRb=91.33%.

Participants then modify the power sequence to a false one,

and 3 unlocking results come back, which makes FPRb=2%.

From our practical observation, participants cannot stay stable

during the test period. Any move of the hands will cause

the different RSSI value, which makes it possible to get the

opposite result.

For facial verification, participants are required to stare at

the camera for a while. The camera captures three following

frames right after initialization. To simulate the light intensity

in real life, several pictures in low light intensity are selected

for evaluation in the experiment. Results show that the facial

recognition achieves a TPR up to 91.1% and FPR about 2.2%.

The false positive samples have two characters: 1) same skin

color and 2) similar facial features. Especially, two volunteers

are the father and son relationship, which contribute most to

the FPR. The AAT is 2.55s, where 1.43s is for initialization

time plus frame capturing time and 1.12s for computation.

For the CP3 test, participants test on our implemented

prototype. From 150 collections, the combined TPRc=88%

and the FPRc=0%, where no pass for incorrect input in our

samples. The time delay measured is 2.88s.

As shown in Fig. 4(b) and Fig. 4(c), CP3 achieves com-

parable accuracy and latency as other individual baseline

authentications. It only incurs 12.9% larger delay than the

facial pattern based authentication. CP3 yields 88% overall

TPR, which demonstrates the feasibility of its practical de-

ployment. In the next section, we show that the TPR can be

further improved by allowing multiple unlocking attempts per

authentication, without compromising much of the AAT.

B. Authentication with Multiple Attempts

In this experiment, we evaluate the impact of unlocking

attempts on the authentication performance by allowing mul-

tiple unlocking attempts per authentication. We change the

unlocking attempts from one to three. The evaluation results

are shown in Fig. 5.
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Fig. 5. Authentication with Multiple Attempts

It is obvious that the accuracy of all these methods will

be improved by allowing multiple attempts, especially for

CP3. The increase rates for all these authentications from

one to three attempts are: 3.33% for fingerprint, 4.67% for

Bluetooth, 6.68% for face and 8.67% for CP3. On the latency

performance, with the increase of unlocking attempts, all

methods do not incur a large increase on the operating delay,

as most authentications can pass on one attempt. Take CP3

for example, it takes 2.88s, 3.04s, and 3.24s, which only has

12.5% increase rate from one to three attempts.

C. Energy Consumption
The main energy cost in CP3 comes from the continuous

Bluetooth monitoring. However, it only runs when the screen

is on. We test the energy consumption in two scenarios for

12 hours, where a smart device keeps playing music with and

without the Bluetooth authentication running on the backend.

Our experimental results reveal that Bluetooth based authenti-

cation consumes 2% higher of battery energy compared with

the case without Bluetooth authentication. This result depends

on the latest BLE mode, which reduces the broadcast channel

time of RF to save energy.

VII. DISCUSSION

In this section, we analyze the security guarantees of CP3,

and discuss practical considerations to improve our method.

A. Security Analysis

The security enhancement provided by CP3 against different

exploitation techniques is discussed below and summarized in

Table I. In conclusion, our combined authentication has the

high level of security, which can defend against individual

attacks, limit combined attacks and the snatch attack.
Single attack defending. Generally, the single attack can

only have one true feedback for the whole authentication.

It cannot pass the final decision part in CP3 where three

feedbacks should be all true. For fingerprint forgery and facial

forgery, it is possible to success but only for one protection.

The other two attacks, including device hacking and eaves-

dropping attack, will not success depending on convert channel

exploitation. Despite the adversary attempts to acquire the

secret token or modify the MAC address, it cannot catch the

transmission power deeply hidden into normal traffics and pass

the comparison process on pair device.

TABLE I
SECURITY GUARANTEES OF DIFFERENT UNLOCKING SCHEMES

Methods
Brute-
force
attack

Finger-
print

forgery

Blue-
tooth

hacking

Facial
forgery

Snatch
attack

Com-
bined
attack

Finger N N Y1 Y N1 N
Bluetooth N Y N Y N N

Face N Y Y N N N

CP3 Y Y Y Y Y L1

1 Y- enable to defend; N- unable to defend; L- defended by limited attempts

Combined attacks and brute-force attack limitation.
Brute-force attack has a low possibility of success proved by

our FPR test results in section VI. As the assumption proposed

in section III-A, it is extremely challenging to choose the

correct attacks because of the undetectable of convert channel.

Attackers also must collect the fingerprint and the facial photos

for owners without being sensed, which is a difficult project.

Snatch attack prevention. The simple way to break the

system is snatch attack. CP3 has a periodical detection to

prevent this attack. Only if attackers snatch both the main

and the paired device, can he get into the system for the first

time. But the second time he wakes up the screen, there are

still three “doors” waiting for him.

B. Practical Considerations

Availability or DoS attacks on auxiliary devices. It

is possible that the auxiliary device is out of battery or

being compromised to shut down intentionally rather than

accidentally. In this case, the Bluetooth authentication should

be automatically or manually disabled to ensure the normal

operation. Increasing the resilience of auxiliary authentication

will be an interesting research topic, which is an important

part of our future work.

Authentication performance. As tested in Section VI,

allowing multiple attempts in authentication improves the

accuracy of CP3. However, it also increases the FPR. The

tradeoff between TPR and FPR should be considered when

choosing the optimal unlocking times. As the CPU speed

improves, authentication time is also expected to be further

reduced where the analysis on three inputs can be performed

more quickly.
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Light impact on facial verification. Our facial verification

changes the color images to gray ones to reduce the influence

on light condition. But it will not work when the surroundings

are totally dark, even the screen light is enabled. In such

condition, we can improve CP3 with context awareness, i.e.,
automatically opening flashlight in front.

Applicability to diverse smart devices. In Section VI, we

have evaluated CP3 using the typical Android smartphone and

smartwatch. It is expected to apply CP3 on different platforms,

such as iOS or Windows platforms etc.

VIII. CONCLUSION

In this paper, we presented the CP3, a new authentica-

tion solution that combines unlocking methods from different

modalities. We introduced the combined unlocking framework

and addressed several challenges to achieve highly secure

and usable authentication for commodity smart devices, which

seamlessly integrate fingerprint, Bluetooth and facial verifica-

tions. In particular, we proposed a new Bluetooth based aux-

iliary authentication method, which modulates transmission

power as a convert channel to avoid wireless eavesdropping. A

prototype of CP3 has been implemented on Android platforms

and the source code is on public. Real-world experiments with

15 participants demonstrate the effectiveness of our solution.

CP3 achieves 88% detection accuracy with very low false

negatives and 2.88s operation latency, which guarantees both

good user experience and high security level compared with

existing methods. In the future, we will investigate the mutual

authentication for smart devices, and address the DoS attacks

on auxiliary authentication.
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