
DEARS: A Deep Learning Based Elastic and
Automatic Resource Scheduling Framework for

Cloud Applications
Muhammad Hassan, Haopeng Chen

School of Electronic Information and Electrical Engineering

Shanghai Jiao Tong University
Shanghai, China

{hassankhan, chen-hp}@sjtu.edu.cn

Yutong Liu
Department of Computer Science and Engineering

Shanghai Jiao Tong University
Shanghai, China

isabelleliu@sjtu.edu.cn

Abstract—Cloud computing paradigm supports more enter-
prises to provide satisfactory web services to their clients.
However, the bursty and fluctuation of requests challenge the
traditional resource scheduling framework. Previous strategies
manage the jobs in each virtual machines (VMs) according to
the derived historical utilization patterns, where the misalignment
on the utilization curves may cause the resource over-prediction
and over-provisioning.

To better reduce the service latency and the above mentioned
problem, we propose DEARS, a Deep learning based Elastic
and Automatic Resource Scheduling framework for cloud ap-
plications. It gives a proactive and reactive strategy, where the
LSTM model is pro-applied to predict the future request demand
based on historical workload. The corresponding VM allocation
is separately managed by restriction assessment, VM provision,
and dynamic consolidation modules. Then the SLAs feedback
are iteratively applied to reactively improve the performance of
resource allocation. Experiments based on real-life collected data
shows the feasibility and efficiency of our framework. The high
accuracy of prediction contributes to a more suitable allocation.
And a better trade-off between QoS and SLAs in server side is
achieved compared with the baselines.

Index Terms—Cloud computing, resource scheduling, deep
learning, SLAs

I. INTRODUCTION

With the rapid development of web services, the crowd

of users is attracted to contribute hundreds and thousands of

requests online. The examples of e-commerce and world cup

websites prove the heavy workload in today’s cloud comput-

ing paradigm. According to the statistics of Double Eleven

Shopping Festival in 2017 of Alibaba, one of the biggest e-

commerce provider in China, around 0.26 million transactions

and 0.33 million orders are processed per second at peak [1].

As for the number of the requests, over 8 million requests

are transferred on FIFA real-time website at the start of final

match [2]. The bursty and fluctuation of requests demand an

efficient resource allocation strategy in cloud computing, with

the delay-minimizing and cost-saving goals.

The resources in cloud computing including CPU, memory,

disk, bandwidth, and so on. are shared by allocating virtu-

al machines (VMs) in an on-demand manner. To improve

the resource utilization, a robust VM provisioning can be

considered automatically and adaptively based on the time-

variance of workloads. Considerable researches have been

devoted to effective resource allocation and management.

Some of them [3]–[6] adapt the derived pattern for resource

provisioning within each VM, where the same jobs share

similar resource utilization patterns according to their histor-

ical utilization curves. However, these curves can be easily

misaligned in time, leading to the resource over-prediction and

over-provisioning [7]. Compared with them, an automatically

proactive approach by forecasting future resource demand val-

ues based on demand history can scale resources dynamically

and reduce the corresponding overhead (i.e., time delay or

power consumption) [8].
According to this forecast, the providers of cloud services

will adjust the number of rented VMs while enforcing Service-

Level Agreements (SLAs) [9]. Because of the bursty or sharp

decrease on workloads in practice, this uncertainty will fre-

quently cause the violation of SLAs or unnecessary expenses

with inappropriate VM number decision. So besides of the

proactive prediction, the reactive adjustment on the number

of VMs should also be applied based on the feedback of the

SLAs violation status.
To solve the above mentioned problems, in this paper, we

propose DEARS, a Deep learning based Elastic and Automatic

Resource Scheduling framework for cloud applications. It

pro-actively and reactively arranges VMs to support high

resource utilization and enforce SLAs requirements. As this

paper is enhanced from our former works [2], [10], [11], the

contributions of this paper can be summarized as:

• Prediction enhancement: Since the workloads in cloud com-

puting paradigm trace the human web browsing patterns,

the deep learning based on time series sequence of real

cloud workloads can reliably predict the future resource

demand [8]. In this paper, we leverage the Long Short Term

Memory (LSTM) model due to its efficiency in learning

long-term dependencies [12]. Our experiments also show its

achievement on higher prediction accuracy compared with

the regularity based prediction in [10] and restriction added

541

2018 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Ubiquitous Computing & Communications, Big
Data & Cloud Computing, Social Computing & Networking, Sustainable Computing & Communications

978-1-7281-1141-4/18/$31.00 ©2018 IEEE
DOI 10.1109/BDCloud.2018.00086

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 29,2020 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

prediction in [11].

• SLAs feedback enhancement: To avoid the uncertainty in

real-life resource management and deal with the bursty or

dramatic decrease on workloads, we analyze the violation

of SLAs after resource scheduling, and regard it as the

feedback for further adjustment in the following scheduling

period.

• Target enhancement: Our former works only target on the

number of requests as the periodic workload targeted in

the whole framework. In this paper, we consider both the

number of requests and the transfer bytes in responses as

targets, which contribute to more accurate prediction and

reliable resource scheduling.

Experiments based on FIFA world cup 1998 workload traces

show the feasibility and efficiency of our proposed framework.

This evolving workloads containing some sudden bursts are

collected over 3 months with 1.35 billion requests, which is

compatible with modern workload traces of servers. We extract

the number of requests and the transfer bytes in responses

and group them by seconds. The RMSEs of our prediction are

satisfactory, which contributing to 99.3% prediction accuracy,

higher than 95% for Dynamic strategy [2] and 97.5% for

AERS [10] or EAERS [11]. The violations of SLAs is 0.58%

, lower than the Dynamic strategy (20%), AERS (2.5%) and

EAERS (1.6%).

The remaining part of the paper is organized as follows:

Section II surveys the related work and some necessary back-

ground knowledge before go in-depth. Section III describes the

problem statement and the system framework. Section IV and

V introduce the details of the design including data processing

and prediction model design, respectively. Section VI reports

the evaluation results. Finally, Section VII concludes the paper.

II. RELATED WORKS

In cloud computing, resource allocation is the processing of

assigning available resources to the on demand applications.

Dynamic provisioning on virtualized resources are provided

where the VMs are added or removed according to the work-

load requirements in a fine-grained, multiplexed manner. In

this section, we will survey on some related work in resource

allocation of cloud computing together with some researches

on workload prediction. Some necessary background knowl-

edge are also introduced to provide convenience to the next

in-depth description of our design.

A. Resource Allocation in Cloud Computing

The main goal of resource allocation in cloud computing

is to provide satisfactory web services to customers, where

the SLAs should be enforced in resource sharing. Compared

with the traditional Topology Aware Resource Allocation

(TARA) and Linear scheduling strategy, the dynamic resource

allocation model is considered more flexible and robust in

practice [13]. And this model is also our main concern in

this paper.

One of the commonly used dynamic resource allocation

model is using VMs, including virtualization technologies and

skewness to realize it. The virtualization technologies are used

to allocate resources based on the application demands. And

the skewness is used to measure the unevenness resource

utilization of a server. This solution can avoid overload and

save energy, where a load prediction algorithm is designed to

capture the future resource usages of applications accurately

[13].

Some of the resource utilization patterns are derived inside

of the VMs using job scheduling. The paper [3] proposes a

priority based job scheduling in VMs. It considers a set of

evaluation criteria and customized assign different weight for

each criteria. The final score and the corresponding consequent

ranking are used to guide the job scheduling in VMs. Although

this solution claims to be faster than the traditional First

Come First Service (FCFS), Robin scheduling algorithm (RR)

and Min-min or Max-min algorithm, it ignores the optimal

finish time of jobs as its main concern is only priority.

Further enhanced, Shen et al. [4] extract elastic features from

job deadline and their reserved bandwidth for job rewards.

Similarly, Liu et al. [14] take power consumption into the job

scheduling consideration. As the power management algorithm

is facilitated by the workload prediction, this post-active

strategy can save more job latency, and obviously, energy con-

sumption to some degree. No matter how many job features are

considering in scheduling, this kind of methods are building

on the observation that the same jobs (or applications) share

similar resource utilization patterns among VMs. This pattern

is derived according to the historical utilization curves, where

the same job curves on different VMs may be misaligned

in time. Using such pattern for resource allocation will lead

resource over-prediction and thus over-provisioning [7].

To avoid this misaligned problem, another direction of

research is to allocate the resources among VMs. Our former

papers are developing in this kind of solution [2], [10], [11].

The paper [2] firstly proposes a basic framework contains three

modules: performance monitor module, workload forecasting

module, and VM scheduler module. After collecting and

tracking the resource utilization data by performance monitor

module, the workload forecasting module can generate the

prediction of the future workload based on these collected

history. The VM scheduler module then decide the number of

VM needed to be increased or removed and the corresponding

mappings from VMs to PMs. The paper [10] proposes an Au-

tonomic and Elastic Resource Scheduling framework, called

AERS. It adds two more modules, including QoS feedback

module and SLAs management module, to better provide the

satisfactory services for customers. To accelerate the decision-

making stages, the paper [11] recently gives an enhanced

version on AERS, where the workloads-VMs number mapping

module in AERS is removed and the restriction model is ap-

plied in the workload forecasting module in order to eliminate

the delay on modeling the specific cloud application. In this

paper, we further develop our work on workload forecasting

module. The deep learning model training by necessary fea-

tures can contribute more accurate workload prediction result

than previous work, which will be introduced next.

542

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 29,2020 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. A simple LSTM cell with three main gates.

B. Workload Prediction in Cloud Computing

Workload traces are one of the examples of time distribu-

tion, representing the web browsing manner for each client.

As mentioned at the beginning of section I, the workload will

burstly increase on November 11 as the sudden increase of the

Alibaba clients. Besides, tourist website requests also increase

when summer vacation coming. All these examples show the

time-variant feature of workload traces.

There are two main types of forecasting methods for

workload prediction: prediction based on classical time series

theory and prediction based on artificial intelligence. The

prediction in paper [2] belongs to the first kind. It considers the

workloads with periodicity but some sudden rises. The authors

in this paper leverage a simple moving average method [15]

and Gompertiz Curve [16] for fittings. The papers [10], [11]

are all applying regularity based prediction, while the paper

[11] adds the restriction model in prediction. The historical

workloads of one specified hour are recorded into queues. The

corresponding probability distribution is acquired from each

queue and lead to the final prediction. The restriction model

in paper [11] is the further processing on predicted results.

After the integration of this model and regularity prediction,

the required CPU cycles can be directly obtained form the

module.

For the second kind, Qiu et al. [17] leverage a deep belief

network composed of multiple-layered restricted Boltzmann

machines and a regression layer. It intends to extract high

level features and predict with unsupervised manner. From

our observation, the prediction on the workload can benefit

from the time dependency. For instance, the prediction of

the next year double eleven day is not only depending on

one year performance, but also the previous several years. It

makes Long-Short Term Memory (LSTM) model sufficient

to give more accurate prediction on workload and solve its

bursty problem in cloud computing services compare with

[17]. As shown in Fig. 1, the sigmoid layer running on the

forget gate makes LSTM useful in sequence related problems.

And its memory ability on any unimportant information gives

the solution for the problem of long-term dependencies. That

is the reason to choose this model in our workload prediction

module.

Fig. 2. The overview of the proposed framework

III. PROBLEM STATEMENT AND FRAMEWORK

We denote the target server cluster as C, with P physical

servers and D types of resources needed to be allocated.

Applications deployed in this cluster provide services through

RESTful or WebService APIs. Both the number of requests

and the size of required resources contribute to the workloads

for each application. So in our framework, the number of

requests Nt and the response size Rt at timestamp t are

the mainly concerned indexes. Actually, these two indexes

represent the state space for a high-dimensional resource

allocation framework, where the current resource utilization

level of each server can be indicated [14]. As the workloads

in state space fits the time-series sequence. The evaluation on

state space is based on the prediction of time-series sequence,

where we choose LSTM model for analysis. And meanwhile,

the action space for this framework is the execution of resource

allocation. The operations applied in action space are decided

both by the predicted workload requirements, but also the

SLAs feedback, with a proper weighted combination.

As shown in Fig. 2, the overview of the whole framework

is consisted by five modules: workload prediction module, re-

striction assessing module, virtual resource provision module,

dynamic consolidation module, and SLAs feedback module.

The function of each module is summarized as:

• Workload Prediction Module: This module takes the real-

time workload traces as input and predict the corresponding

number of requests at the next time stamp.

• Restriction Assessing Module: This module takes the pre-

dicted number of requests to calculate the required CPU

cycles and further assess the average utilization at VM and

PM level.

• Virtual Resource Provision Module: This module considers

the change of VM numbers by the comparison between the

workload requirements and the present utilization status of

current VMs.

• Dynamic Consolidation Module: The functions of dynamic

consolidation module are directly inherited from our previ-

ous work [11], including logical clustering, PM screening,

VM selection and mapping.

• SLAs Feedback Module: This module will monitor the real-

time QoS and SLAs values after the appliance of our re-

543

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 29,2020 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

(a) Original response size in bytes per second. (b) Conversion of response size in kilo-bytes per
second.

(c) Conversion of response size in mega-bytes per
second.

Fig. 3. The comparison between the different down-scaling on response size.

source allocation strategy. Further adjustments of parameters

in our strategy are made based on the feedbacks.

Proposed by Amazon EC2 1, the topology of clouds is

combined by region and availability zone. The region zone is

partitioned by the geographical positions and the availability

zone represents different data center for requests processing.

The communication overhead across availability zones is

caused by the increasing number of separated VMs, which

is inevitable to be avoided in design. It is intuitive that to

decrease this overhead, the VMs can be put into a same zone,

but it will dramatically hurt the useability of the cloud system

in practice.

The SLAs is another important evaluation. It indicates the

reliability and effectiveness of our proposed framework. The

violation of SLAs is considered in performance evaluations,

which specified as the percentage of requests whose processing

delay exceeded the latency requirements in client side.

To fulfill the above mentioned requirements, the design goal

of our framework is to provide availability-aware, commu-

nication overhead optimized, and SLAs guaranteed resource

allocation.

IV. DATA ANALYSIS AND PROCESSING

In this paper, we choose the FIFA worldcup 1998 [18]

workload traces as our target dataset. This data is collected

over 3 months with around 1.35 billion requests. The detail

information of the raw trace data is shown in Table I. As

this dataset has evolving workloads including sudden burst,

the resource utilization pattern of this dataset is suitable for

our concerned problem. The sudden burst workloads inside

represent the sudden increasing in requests online which are

unresponsive for most servers because of the limited amount

of available resources, and this is also our main concern in

solution design.

This workload traces are header responses by the servers

for specific requests from clients. The whole trace includes 7

information blocks: IP address, login name of user, authen-

tication name, data as timestamp, request line, status code,

and response size in bytes. As this header response format is

compatible with modern workload traces where the website

1https://aws.amazon.com/ec2/

TABLE I
DETAIL INFORMATION OF RAW DATA

Duration 88 days
Number of total requests 1,352,084,107

Average number of requests per minute 10,796
Total transferring bytes 4,991GB

Average transferring bytes per minute 40.8GB

services (e.g., facebook, google) are set on Apache server,

the design and implementation on this target dataset can be

also readily extended to other data or servers. However, not

all information blocks are involving in prediction utilization,

we are interested in the timestamp and response size blocks

to build a time-series workload data used for deep learning

prediction, and the status code for the efficiency checking in

evaluation section.

Two necessary features need to be extracted from dataset:

number of requests and the size of responses in seconds. We

firstly group the raw data by seconds and then count the

numbers together with sum the sizes in one second. Both

of these two features will be combined as the input, and the

output is these two corresponding feature values at the next

timestamp.

However, the response size by default is in bytes and the

unit of number of requests is 1. According to the raw data,

the value of the number of request ranges from 0 to 103 but

the value of response size ranges from 0 to 106. As shown in

Fig. 3(a), the number of requests is at lower scales compared

with the response size in bytes. Proved by the experiments,

this huge scale difference will make two features (number of

requests and size of response) irrelevant in prediction. To solve

this problem, we standardize the response size attribute by

down-scaling. We experimentally figure the mega-bytes scale

can keep the closest relational similarity between two features

as shown in Fig. 3(c), compared with bytes in Fig. 3(a) and

kilo-bytes in Fig. 3(b). After standardizing, these two features

should also be transformed between 0 to 1 to further reduce

variance. The normalization is done by scikit-learn object

MinMaxScaler 2. The detailed information of the transformed

2https://goo.gl/H3qHJU

544

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 29,2020 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

TABLE II
DETAIL INFORMATION OF TRANSFORMED DATASET

Total number of the transformed dataset 7.405×10e6/second
Number of requests

Minimum number 0.00/second

Maximum number 3.488×10e3/second
Transferring bytes in response

Minimum response bytes 0.00/second

Maximum response bytes 6.67×10e4/second

data after processing on the original 88 days’ dataset is shown

in Table. II.

V. DESIGN OF PROPOSED FRAMEWORK

In this section, we will introduce the detailed design of our

proposed framework.

A. Prediction Model Design

In this section, we will introduce the input transformation

and specific model design for prediction.

1) Input Transformation: As the workload prediction model

in deep learning is a supervised learning problem, we need

to transform the input as the format of variables X and

its corresponding label Y . For prediction on the number of

request and response size at the next timestamp, we arrange the

number of the request Nt and size of response Rt at the next

timestamp t as the label of the values of Nt−1 and Rt−1 at the

former timestamp t− 1. For example, the time-series data is

represented as {N1, R1, 1}, {N2, R2, 2}, ..., {Nt−1, Rt−1, t −
1}, {Nt, Rt, t}. The {N2, R2} at time 2 will become the label

of {N1, R1} at time 1, and combined as one sample. The rest

can be done in the same manner, like the sample at time t−1
is the variable of {Nt−1, Rt−1} with the label of {Nt, Rt}.

2) Model Architecture: Assume that the length of the

workload traces is N , we set the size of sliding window as

a fixed W (0 < W < N). As shown in Fig. 4, the Wi

(0 < i < N − W) is the input for the prediction of Wi+1

and so on.

Fig. 4. The structure of LSTM model

Our model consists of one input layer of 50 neurons, one

hidden layer with 250 units, and one fully connected hidden

layer as an output layer with 2 units. A 0.2 dropout mask

TABLE III
DETAILED INFORMATION OF OUR LSTM MODEL

Name Type # of hidden units # of Params.
lstm 1 Hidden layer 50 10600

dropout 1 Dropout layer 50 0
lstm 2 Hidden layer 250 30100

dropout 2 Dropout layer 250 0
flatten 1 Flatten layer 250 0
dense 1 Dense layer 2 502

activation 1 Output layer 2 0

with solid probability percentage of cell units is applied to

the output of every LSTM layer. The goal of this dropout

mask is to remove the potential strong dependency on one

dimension so as to prevent overfitting. The optimizer of our

model is Adam in Tensorflow. The detailed information about

the layers are summarized in Table. III including the name

and type of the layer, corresponding input and output shape

and the number of related numbers. In this table, the flatten

layer converts the 3 dimensional input to 2 dimensional output.

Dense layer is the fully connected layer with flat number of

hidden units. And activation layer applies non-linear activation

on the output of the dense layer.

B. Resource Allocation Algorithm Design

Before applying the predicted workload to resource alloca-

tion algorithm, the capacity of each VM should be evaluated

by the CPU cycles, which is different according to various

VM configurations. Taking 1.0 GHz single-core processor in

VM as an example, the total 6 × 1010 CPU cycles can be

handled per minute. Measured from our experiments, each

request take 3× 107 CPU cycles, which means a single-core

processor can deal with at most 103 requests as 50% CPU

utilization. Compared with the predicted number of requests,

the partition of VM can be considered as either addition (i.e.,

capable requests are lower than required requests) or deduction

(i.e., capable requests are higher than required requests).

Enhanced from our former work [11], we propose an

improved resource allocation strategy in order to reduce the

processing latency and increase the requirement satisfaction.

For the reduction of the processing latency, we combine the

Virtual Resource Placement Module into the Dynamic Consol-
idation Module. As the Virtual Resource Placement Module
has the same function with the Micro-management Unit in

Dynamic Consolidation Module, this combination can reduce

the redundancy in previous framework. For the feasibility of

our framework, we separate the restriction assessing unit in

previous dynamic consolidation module as a single module. As

mentioned before, the capability of VMs is measured by CPU

cycles which are partly depending on the utilization degree.

So we put this separated unit before virtual resource provision

module.

For requirement satisfaction, we improve the SLAs Feedback
Module, where the monitored SLAs measurements will be

put into the consideration of utilization. In the restriction

assessing module, two supply and demand relationships should

be considered:

545

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 29,2020 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

(1) VM level relationship: In this relationship, the system

demands and the supply of VMs are analyzed. Our former

work [11] only considers the CPU cycles required as demands.

In this paper, we consider both the CPU cycles required and

the SLAs feedback. The estimation of the average utilization

on VM level can be expressed as:

Utilizationavg =
CPUCyclesRequired+ α · SLAs

t ·∑NumberOfCoresi · fi .

The numerator in the function requires both the CPU

cycles required calculated from the predicted workload and

the SLAs feedback represented by the violation level. The

corresponding weight α can be learned from multiple attempts.

The dominator represents the total available VMs capability,

where the NumberOfCoresi and fi are the configuration

of each VM and the current frequency, respectively, together

with the timestamp t. The feedback of SLAs can support

the flexible adjustment on VM numbers to deal with the

uncertainty in real-life. For instance, if the violation of SLAs

is high when the CPU cycles required is A and the current

utilization is B. Then the number of VMs should be increased

in the following timestamps when the required CPU cycles and

current utilization are also A and B.
(2) PM level relationship: This relationship is between the

VMs’ demands and PM’s supply. The SLAs will also be

applied into this level, where the utilization of PM will be

estimated as:

UtilPM =
t ·∑NumberOfCoresi · fi · Utili + β · SLAs

NumberOfCoresPM · fPM

The numerator represents the utilization in VMs placed

on corresponding PM, while the dominator calculates the

available capability of this PM. Utili is the CPU utilization

measurement for each VM i. Same with α, the weight β can

be learned after multiple attempts. Here, the violation of SLAs

will increase/decrease the VMs’ demands to fulfill the reality.

VI. EVALUATION

In this section, we evaluate two parts of the performances:

• The performance of the workload prediction, especially the

accuracy of the prediction model.

• The performance of the resource scheduling, including the

violation of SLAs between the predicted value and the

original value, to show the efficiency and robustness of our

framework.

Taking as comparison, we adapt our three former works as

benchmarks:

• Dynamic Virtual Resource Management with Traffic Burst

[2] in 2014: This is the fundamental dynamic resource man-

agement framework, with the Gompertz Curve prediction

and simply comparison for VM number decision.

• AERS [10] in 2016: It applies regularity based prediction

and enhanced VM mapping framework by consolidation.

• EAERS [11] in 2017: It is the enhanced version of AERS,

where the prediction is added by restriction model and

framework is shrink by the parallelled processing on dy-

namic consolidation.

(a) Per-second prediction on July 7th. (b) Per-second prediction on July 8th.

Fig. 5. The evaluation on the number of the request per-second predictions.

(a) Per-second prediction on July 7th. (b) Per-second prediction on July 8th.

Fig. 6. The evaluation on the smaller samples of the number of the request.

A. Performances About Workload Prediction

The experiments on workload prediction are carried out

using Deep Learning Framework Tensorflow version 1.8, and

the LSTM model is implemented on the Python Deep learning

Library Keras. The training and testing on the model are

performed on a NVIDIA GTX 1080 ti GPU Computer with

Ubuntu 16.04.5 LTS.

The 88 days’ dataset can be divided to 2057.14 hours’ data.

We split the whole dataset into 80% training set and 20%

testing set, with the batch size of 500,000 and epochs of 400.

We take Root Mean Square Error (RMSE) [8] as the important

criteria for prediction evaluation. The RMSE is calculated by

the predicted values X̂ , the original value X and the length

n:

RMSE =

√√√√ 1

n

n∑
t=1

(X̂t −Xt)
2

1) Per-second prediction: According to the observation of

our dataset, the number of the requests is highest on July

7th and July 8th, which are only included in testing set. The

prediction accuracy is mainly compared on these two days.

Fig. 5 (a) and (b) show the prediction on the number of

the requests. In both of the figures, we take 86,400 samples

including the whole-day workload traces in July 7th and 8th.

The prediction results showed in the figures is overlapping

with the original values. The RMSE in Fig. 5 (a) is 30.700

and another in (b) is 34.080, which is quite satisfactory.

For better visualization we take 60 samples from July 7th

and 8th to see the result, which are shown in Fig. 6 (a) and

(b). The test RMSE on this smaller samples still performs well,

indicating 23.510 in July 7th and 21.629 in July 8th.

546

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 29,2020 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

Similarly, the evaluations on the transferring response size

are also depending on whole-day workload and smaller sam-

ples on July 7th and 8th. The corresponding results are shown

in Fig. 7 and 8. The Test RMSE respectively is 1.568 for Fig.

7 (a), 1.396 for Fig. 7 (b), 1.424 for Fig. 8 (a) and 1.871 for

Fig. 8 (b), which are even better than the prediction of number

of requests.

(a) Per-second prediction on July 7th. (b) Per-second prediction on July 8th.

Fig. 7. The evaluation on the transferring response size per-second prediction.

(a) Per-second prediction on July 7th. (b) Per-second prediction on July 8th.

Fig. 8. The evaluation on the smaller samples of the transferring response
size.

2) Per-minute prediction: As our VM scheduler algorithm

takes at least next 2 minutes’ input on the predicted number of

requests, we evaluate on the minute’s prediction ability of our

model. We take 60 seconds’ values as input and predicts next

60 seconds two times to generate two minutes’ values, where

the sliding window is set to 60. The actual and predicted values

are compared to calculate the RMSE on 2-mins prediction. We

randomly select another two days besides July 7th and 8th for

evaluation. The detailed comparisons on May 15th, June 15th,

July 7th and July 8th are shown in Table IV. The RMSE is

small in four evaluations, which shows the efficiency of our

model that even smaller input can accurately generate more

results.

3) Prediction Accuracy Comparison: The prediction

method in EAERS is actually same with the one in AERS,

where the restriction model only works on the predicted values

rather than the predicted processing. So, the comparisons

between four different workload prediction methods are shown

in the first column of Fig. 9. Our deep learning methods

perform better than another two predictions, as it flexibly

consider the real workload status and deal with the sudden

burst and dramatic decrease. It also shows a hopeful direction

in cloud computing research area that the deep learning applied

framework can be considered.

TABLE IV
THE EVALUATION ON PER-MINUTE PREDICTION

Date May 15th June 15th July 7th July 8th

of
requests

Original 1122 36756 17216 35575

Predicted 1147 38517 16927 35737
Mean Original 9.429 308.874 144.672 298.950

Predicted 9.639 323.672 142.244 300.311
Min Original 2.000 253.000 108.000 252.000

Predicted 0.000 0.000 0.000 0.000
Max Original 22.000 360.000 186.000 369.000

Predicted 19.000 370.000 190.000 373.000
RMSE 2.085 14.798 2.428 1.361

Prediction accuracy SLAs satisfaction
0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge

DEARS
Dynamic
AERS
EAERS

Fig. 9. The comparisons on prediction accuracy and SLAs satisfaction.

B. Performances About Resource Scheduling

To evaluate the performances about resource scheduling

framework, we have created a prototype of the proposed

framework in Java. The prototype is carried on cloudsim

simulator [19], which requests one data center, a dynamic

number of host and the required number of VM migrations

as inputs. The data center is set as endless number of physical

machines, and the VMs have the configurations of 2GHz CPU,

4GB memory and 10G I/O bandwidth. We adapt the July 8th’s

log traces as the original workload and the corresponding

predicted workloads. The size of the input dataset if 720,

where each value represents the total number of requests

during 2 minutes’ time period.

The SLAs violations are evaluated on predicted and original

workloads, as shown in Fig. 10. The SLAs violations increase

with the workloads, but the performance become better and

better depending on the SLAs feedback contribution. To sum

up, the percentage of SLAs violation for predicted value is

0.58%, while the percentage of SLA violation for original

value is 0.50%. We observe that the SLA violation on original

values is less than it on predicted ones. As the accuracy ratio

on prediction of our model is 99.3%, we can assume that the

resource scheduling on predicted workload can fulfill the real-

life configurations.

The comparisons between four different resource scheduling

methods are shown in the second column of Fig. 9. Our

proposed DEARS framework can achieve higher SLAs sat-

isfaction than other three benchmarks. As the Dynamic one is

547

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 29,2020 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

(a) SLAs violation with predicted
workloads

(b) SLAs violation with original
workloads

Fig. 10. The SLAs violation performance with two types of workloads.

the fundamental one and AERS and EAERS are all enhanced

version based on this fundamental strategy, the Dynamic

strategy achieve lowest performance. Mostly, the deep learning

accuracy increasing contributes to the better performance on

resource scheduling, where the SLAs feedback contributes on

another part of performance improvement.

VII. CONCLUSION & FUTURE WORK

Resource allocation is an attractive topic in cloud com-

puting. Although considerable researches have been made

in this area, some of them may suffer the misalignment

problem on analysis, which leads to the over-provisioning of

virtual resources. To reduce the processing latency on resource

scheduling and enforce the SLAs requirements, a proactive and

reactive resource allocation strategy should be considered. In

this paper, we propose DEARS, a deep learning based elastic

and automatic resource scheduling framework. It contains five

modules including workload prediction module, restriction

assessing module, virtual resource provision module, dynamic

consolidation module, and SLAs feedback module. Enhanced

from our previous work, we improve the accuracy of workload

prediction by deep learning methods based on LSTM model.

And we consider both the number of requests and the transfer

bytes in responses as workloads in prediction. The violation of

SLAs is regarded as a feedback to adjust the number of VMs

both on VM level and PM level. Experiments based on FIFA

1998 workloads prove the feasibility of our framework, con-

taining higher prediction accuracy and better SLAs fulfilling

level.

To better improve our work, we consider two aspects as

future work:

• As the dataset we used is a server log files workload Traces

of FIFA 1998, which is from a static website, we would

like to apply deep learning technique on dynamic websites

which are popular nowadays.

• In this paper, we just analyze the number of requests and the

transfer bytes in responses. We would like to further classify

the request types and distinguish the group of requests by

their types for more specific resource scheduling.

ACKNOWLEDGEMENT

This paper is supported by Joint Research Laboratory of

Financial Information Security, Bank of China.

REFERENCES

[1] BrandChannel, Alibabas 2017 11.11. global shopping festival passes
$25b, https://www.brandchannel.com/2017/11/12/2017-alibaba-11-11\
\-double-11-results-111217/, november 12, 2017.

[2] H. Lu, H. Chen, S. Ma, W. Dai, P. Xing, Dynamic virtual resource man-
agement in clouds coping with traffic burst, in: IEEE SCC, Anchorage,
AK, USA, 2014, pp. 590–596.

[3] S. Ghanbari, M. Othman, A priority based job scheduling algorithm in
cloud computing, Procedia Engineering 50 (9) (2012) 778–785.

[4] H. Shen, L. Yu, L. Chen, Z. Li, Goodbye to fixed bandwidth reservation:
Job scheduling with elastic bandwidth reservation in clouds, in: IEEE
CloudCom, Hong Kong, China, 2017, pp. 1–8.

[5] L. Yu, L. Chen, Z. Cai, H. Shen, Y. Liang, Y. Pan, Stochastic load
balancing for virtual resource management in datacenters, IEEE Trans-
actions on Cloud Computing PP (99) (2016) 1–1.

[6] D. Xie, N. Ding, Y. C. Hu, R. Kompella, The only constant is change:
Incorporating time-varying network reservations in data centers, in:
ACM SIGCOMM, Helsinki, Finland, 2012, pp. 199–210.

[7] L. Chen, H. Shen, Considering resource demand misalignments to
reduce resource over-provisioning in cloud datacenters, in: IEEE IN-
FOCOM, Atlanta, GA, USA, 2017, pp. 1–9.

[8] C. Vazquez, R. Krishnan, E. John, Time series forecasting of cloud data
center workloads for dynamic resource provisioning, Dissertations &
Theses - Gradworks.

[9] L. Blasi, G. Brataas, M. Boniface, J. Butler, F. D’Andria, M. Drescher,
R. Jimenez, K. Krogmann, G. Kousiouris, B. Koller, Cloud computing
service level agreements – exploitation of research results.

[10] J. Sun, H. Chen, Z. Yin, Aers: An autonomic and elastic resource
scheduling framework for cloud applications, in: IEEE SCC, San Fran-
cisco, CA, USA, 2016, pp. 66–73.

[11] Z. Yin, H. Chen, J. Sun, F. Hu, Eaers: An enhanced version of autonomic
and elastic resource scheduling framework for cloud applications, in:
IEEE CLOUD, Honolulu, HI, USA, 2017, pp. 512–519.

[12] M. Akram, C. El, Sequence to sequence weather forecasting with long
short-term memory recurrent neural networks, International Journal of
Computer Applications 143 (11) (2016) 7–11.

[13] N. Krishnaveni, Survey on dynamic resource allocation strategy in cloud
computing environment 2 (6) (2013) 731–732.

[14] N. Liu, Z. Li, J. Xu, Z. Xu, S. Lin, Q. Qiu, J. Tang, Y. Wang, A hierar-
chical framework of cloud resource allocation and power management
using deep reinforcement learning, in: IEEE ICDCS, Atlanta, GA, USA,
2017, pp. 372–382.

[15] A. Ranabahu, P. Patel, A. Sheth, Service level agreement in cloud
computing, Cloud Sla.

[16] C. P. Winsor, The gompertz curve as a growth curve, Proceedings of the
National Academy of Sciences of the United States of America 18 (1)
(1932) 1–8.

[17] F. Qiu, B. Zhang, J. Guo, A deep learning approach for vm workload
prediction in the cloud, in: IEEE SNPD, Shanghai, China, 2016, pp.
319–324.

[18] M. Arlitt, T. Jin, A workload characterization study of the 1998 world
cup web site, IEEE Netw 14 (3) (2000) 30–37.

[19] T. Goyal, A. Singh, A. Agrawal, Cloudsim: simulator for cloud com-
puting infrastructure and modeling, Procedia Engineering 38 (4) (2012)
3566–3572.

548

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on October 29,2020 at 03:59:19 UTC from IEEE Xplore. Restrictions apply.

