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A B S T R A C T

As one of the internet of things (IoT) use cases, wireless surveillance systems are rapidly gaining popularity due
to their easier deployability and improved performance. Videos captured by surveillance cameras are required
to be uploaded for further storage and analysis, while the large amount of its raw data brings great challenges
to the transmission through resource-constraint wireless networks. Observing that most collected consecutive
frames are redundant with few objects of interest (OoIs), the filtering of these frames before uploading can
dramatically relieve the transmission pressure. Additionally, real-world monitoring environment may bring
shielding or blind areas in videos, which notoriously affects the accuracy on frame filtering. The collaboration
between neighbouring cameras can compensate for such accuracy loss.

Under the computational constraint of edge cameras, we present an efficient video pre-processing strategy
for wireless surveillance systems using light-weight AI and IoT collaboration. Two main modules are designed
for either fixed or rotated cameras: (i) frame filtering module by dynamic background modelling and
light-weight deep learning analysis; and (ii) collaborative validation module for error compensation among
neighbouring cameras. Evaluations based on real-collected videos show the efficiency of this strategy. It
achieves 64.4% bandwidth saving for the static scenario and 61.1% for the dynamic scenario, compared with
the raw video transmission. Remarkably, the relatively high balance ratio between frame filtering accuracy
and latency overhead outperforms than state-of-the-art light-weight AI structures and other surveillance video
processing methods, implying the feasibility of this strategy.
1. Introduction

Wireless video surveillance systems nowadays perform as guardians
in our daily life due to its easier installations and flexible infrastruc-
tures [1]. It helps in traffic monitoring [2], parking management, and
public security protection in campus, office buildings, or residential
communities [3,4]. With the tremendous advancements of artificial
intelligence (AI), deep learning models are widely adopted in these
applications, which requires real-time video feeding and analysis. How-
ever, according to a global forecast report in 2020 [5], the wireless
video surveillance systems would enlarge 10.4% usage worldwide from
2020 to 2025, based on the already existed USD 45.5 billion markets.
It is apparent that with the growing size of monitoring areas and
the number of cameras, the increasing quantity of video streams will
bring great challenges on transmission through the resource-constraint
wireless network.

✩ This paper extends our previous work published in the Proceedings of the International Symposium on Quality of Service (IWQoS) 2019 (Liu et al., 2019).
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Existing commercial solutions to reduce the transmission quantity
on the camera side based on dynamic detection and video coding,
which represent temporal and spatial reduction respectively. For the
former solution, cameras only start recording and transmitting videos
when the different level between two consecutive frames is over the
threshold [6]. However, several redundant but dynamic frames will
still be captured to the cloud via this method. For example, the public
security monitoring in residential communities concerns more about
frames containing human activities, animals, and transportation, while
frames containing branches sway or garbage bags fly are redundant but
dynamic so remained. For the latter solution, video coding standards
(e.g. H.264 [7], H.265 [8]) and their variants [9–11] can structurally
compress videos without frame filtering. It is compatible with the
former solution, which is out of the scope of our discussion.
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Fig. 1. Observations on video redundancy and environmental shielding.

In this paper, we focus on the temporal reduction of the transmitted
video quantity. It is worth to notice that there exist a large num-
ber of redundant frames in transmitted video streams, which contain
less information useful for surveillance applications. Still taking the
monitoring in residential communities as an example, we conduct
analysis on a 168-hour (one week) monitoring video captured by one
camera in a community. As shown in Fig. 1(a), we observe that except
the rush hour (7:00–9:00 and 17:00–19:00), there are few OoIs (i.e.,
human, cars, and animals1) detected during other periods in this video.
The filtering of these redundant frames will not affect the quality of
safety monitoring service but can dramatically save wireless bandwidth
during transmission.

Accordingly, we aim to design a content-aware frame filtering strat-
egy to enhance the video compression ratio on the camera side. Well-
known deep learning models are powerful tools for content-aware
frame filtering, such as SSD [12], YOLO [13], R-CNN [14], etc. But
it is not feasible to directly apply these model on edge cameras due to
their limited computational capabilities. Methods like DeepMon [15],
DeepEye [16], MobileNet [17], and MBBNet [18] propose light-weight
model optimization either on model construction or calculation for
relatively powerful portable devices like mobile phones. As compared
in Table 1, the surveillance cameras have much lower computational
capabilities than mobile phones, which require a higher compres-
sion degree for deep learning models. In this paper, we discuss the
model compression possibility both structurally and computationally.
Additionally, massive buildings, plants, and facilities in environments
may introduce the shielding even blind monitoring areas in videos
(Fig. 1(b)), which would reduce the detection accuracy on redundant
frames. To deal with this problem, we add a collaborative valida-
tion module based on the edge computing framework [19–21], where
neighbouring cameras can help to validate an uncertain frame by
peer-to-peer communication.

In a word, we present an efficient video pre-processing in wireless
surveillance systems using light-weight AI and IoT collaboration. We
consider both static and dynamic surveillance cameras, where dynamic
cameras rotate in a stable speed continuously. This strategy is mainly
composed of two modules: the frame filtering module on edge cameras
and the collaborative validation module among neighbouring pairs.
For the first module, we firstly model the background considering the
angle of cameras with a proposed DCS-LBP operator and select key
frames after background pruning. A light-weight SSD model optimized
by channel pruning and convolution acceleration is then applied to
these key frames on OoI detection. Only groups of pictures (GOPs) cor-
responding to key frames which are OoI contained will be transmitted
to the cloud. The second module is complementary to the accuracy loss
in the first module. The uncertain frames which contain partly shielded
objects will be broadcasted to neighbouring cameras for validation.

A surveillance system prototype is implemented from edge cameras
to the central server for evaluation. Three main factors are evalu-
ated on real-collected videos to show the efficiency of this strategy:
compression ratio, accuracy, and latency. Our method achieves 64.4%
compression ratio for videos with a static background and 61.1% for
2

ones with a dynamic background, which dramatically releases the
Table 1
The comparisons on different embedded processors.

Device CPU Speed Energy

Surveillance camera M0 0.9DMIPS/MHz 85 μW/MHz
M4 1.25DMIPS/MHz 104 μW/MHz

Mobile phone A9MP 2000DMIPS/MHz 0.24 W

transmission burden. As for accuracy, it successfully filters out 92.6%
redundant frames. And for latency, it only causes maximal 0.049 s
computational latency on deep learning module and 2.79 s process-
ing delay on validation module for each frame. Its overall balance
ratio on accuracy and latency outperforms than state-of-the-art surveil-
lance video processing methods, indicating the satisfactory of accuracy
performance and the acceptance of latency overhead.

To sum up, this paper makes the following contributions:

1. Adaptive background modelling: To adapt our strategy on most
kinds of surveillance cameras, we consider adaptive background
modelling for the flexible key frame selection.

2. Joint model optimization: We explore the possibility to optimize
both the structure and the computation steps to build a light-
weight deep learning model, resulting in faster speed and fewer
computational consumptions.

3. Collaborative validation on cameras: We novelly design a col-
laborative scheme among edge cameras for validating uncertain
frames. It behaves as the compensation for accuracy loss caused by
environment shielding.

The remaining part of the paper is organized as follows: Section 2
surveys the related work on two modules in our strategy. Section 3
describes the problem statement and the designed framework. Sec-
tions 4 and 5 introduce the details of the design and the prototype
implementation, respectively. Section 6 reports the evaluation results.
Finally, Section 7 concludes the paper and reviews some future work.

2. Related work

In smart surveillance systems, cameras on the edge have their own
computational capabilities and connected to the cloud by network
communication, which builds a typical edge computing scheme [19].
The core idea of this scheme is to bring network functions, contents
and resources closer to end devices (e.g., edge cameras in surveillance
systems) [22], which makes it possible for pre-processing on videos
and collaborative validation on the edge before transmission. In this
section, we will discuss recent advances on local pre-processing of
surveillance videos, light-weight deep learning model optimization, and
multi-camera collaboration.

2.1. Surveillance video pre-processing on edge cameras

The widely-used surveillance video pre-processing depends on mo-
tion detection [6] or sampling rate deduction [23]. Although these
methods keep the lowest computational overhead, they are not precise
enough for fine-tuned redundancy deduction, as redundant objects
cannot be detected and filtered out. Recently, deep learning-based
content-aware video pre-processing methods gain their great popular-
ity. Users can train their models for practical detection targets and the
powerful deep learning framework provides high detection accuracy.
Well-known deep learning models for object detection can be divided
to two types: (i) region-based models: R-CNN [14], SPP-net [24], Fast
R-CNN [25], R-FCN [26], etc; and (ii) end-to-end models: YOLO [13]
and SSD [12].

Previously discussed in Table 1, off-the-shelf surveillance cameras
have 103 times lower computational speed and energy consumption
than mobile phones. It means that the above mentioned deep learn-
ing models cannot be directly applied on cameras, who have over
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Fig. 2. The overall framework. [Left: Camera distribution in one community (Yellow area implies the monitoring coverage of the camera (static or dynamic), and blue lines
implies their WiFi communication); Right: Strategy illustration from edge computing to transmission between one master–slave pair (marked in the red circle on the left).] (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
30 layers to process. Light-weight model optimization has been dis-
cussed recently. The cache-based convolutional optimization and ten-
sor decomposition in DeepMon [15] can decrease the computational
complexity of models. DeepEye [16] leverages the memory caching
and SVD-based model compression to support multi-model running.
And MobileNet [17] proposes a depth-wise separable convolution,
combined by a single-filter derived convolution and 1*1 pointwise con-
volution. MBBNet [18] utilized channel pruning to reduce the model
size, while its input has high resolution and its output is required to
be highly accurate for autonomous drive. Besides, according to their
evaluations, the feasible devices for these lightweight models should
be supported by quite powerful CPU and GPU processors (e.g., 2 GHz),
which is not directly applicable for commodity surveillance cameras.
In this paper, we tend to optimize the deep learning model from both
model construction and calculation aspects, to build a smaller and
faster model structure.

2.2. Camera collaboration

Inevitable information missing in uncertain frame detection remains
unsolved when using single camera analysis. A scheme called Multi-
Camera Coordination and Control (MC3) [27] can address this issue
by master–slave camera collaboration. Collins et al. [28] firstly pro-
posed such a framework, where the master camera is used to track
the trajectories of objects, and the slave camera performs specific
recognition. Generally speaking, such multi-camera system combines
features from different cameras to exploit a scene of an event and can
increase the output accuracy by the aggregation of different source
of information [29]. Nowadays, it has been leveraged in different
scenarios such as surveillance [30,31], sports [32,33], education [34],
etc. Related to our paper, the surveillance applications have leveraged
this system to increase tracking or detection accuracy. Zhang et al. [30]
leveraged object re-identification between cameras for face recognition,
while it only considered fixed cameras with pre-known orientations.
Jin et al. [31] adopt multi-camera collaboration for pedestrian tracking
and proposed a structured vector machine as the cross-camera model,
however, the computational latency of this model is non-negligible. To
the best of our knowledge, we first utilize multi-camera collaboration
for frame validation as an accuracy compensation of light-weight mod-
els in video compression. We consider the rotation of cameras to deal
with more complex scenario, and seamlessly connect the AI detection
module with the validation module, where the previous AI detection
results can help to match the projection with detected OoIs, rather than
requiring extra decision models.
3

3. Problem statement and strategy overview

The application scenarios of surveillance cameras include residen-
tial communities, offices, campus and so on. In this paper, we take the
residential community as an example, where the challenges faced by
wireless surveillance system are more representative in its limited area.
As shown in the left figure of Fig. 2, surveillance cameras are deployed
at important corners, while the type of cameras can be either stable
or dynamic. Neighbouring cameras have overlapping monitoring areas
at specific timestamps, and they can communicate with the embed-
ded WiFi module in a short range (around 15 metres for commodity
cameras) through limited bandwidths. Each camera has two different
monitoring mode: active mode and sleep mode. In the active mode,
cameras capture videos in a high ratio (e.g., 60 fps), but for the sleep
mode is in a low ratio (e.g., 15 fps) [35]. Each camera has its inde-
pendent processing system with an embedded core processor without
GPU, which has the lower computational capability on video streams,
and difficult to handle heavy computational tasks (e.g., running a deep
learning model with above 10 layers). All these cameras connect direct
current and support SD card insertion, where power and storage savings
are out of our research scope.

The target of our research is to build an energy-efficient wireless
surveillance system by accurately filtering out redundant frames before
transmission. So the deduction ratio and the filtering accuracy of redun-
dant frames are two main factors considered in this paper. Considering
the limited computational capability of cameras, the computational
burden conducted on cameras should be controlled, which can be
reflected by acceptable computational latency [36,37]. Taking them as
goals, we design a light-weight edge computing strategy for wireless
surveillance systems shown in Fig. 2, which mainly composed of two
main modules labelled by dotted boxes: frame filtering module and
collaborative validation module.

Considering that fewer OoIs will show up other than rush hour in
residential communities, each camera works in the sleep mode first and
activates until the motion detected for power saving. The first frame
filtering module aims to filter out redundant frames by light-weight
detection on OoIs in edge cameras. Let F = {𝑓1, 𝑓2, 𝑓3,… , 𝑓𝑡−1, 𝑓𝑡,…}
denote the current video sequence, where 𝑓𝑡 is the frame captured at
the timestamp 𝑡. For the camera rotated in a fixed angular velocity 𝜔,
the period of its rotation can be represented by 𝑇 . Firstly, we model the
dynamic background according to the spatial and temporal information
between frames, where the background pixels will be assigned to the
value 0 for background pruning. The pruned frames will then perform
as the input of key frame selection. In this paper, we select key frames
according to the local maximum value of inter-frame differences among
consecutive frames, which have better extraction results than selecting
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Fig. 3. Performance visualization of different dynamic background modelling methods.
by orders or threshold according to our experiments. As long as the
average inter-frame difference of a frame is a local maximum value,
this frame will be selected as a key frame. To remove the noise, we
smooth the average difference before calculating the local maximum,
which can avoid repetitive selection on similar scenes. Denote the key
frame set of video clip 𝐹 as 𝐾 = {𝑓𝑘1 , 𝑓𝑘2 ,… , 𝑓𝑘𝑛}, the GOP is the
group of frames between two consecutive key frames, represented as
𝐺𝑂𝑃 𝑖 = {𝑓𝑘𝑖 , 𝑓𝑘𝑖+1,… , 𝑓𝑘𝑖+1}.

Taking these key frames as the input of light-weight deep learning
model, three types of objects in frame 𝑓𝑡 will be classified as the output:
clear object with over 50% detection accuracy; uncertain object with
0%–50% detection accuracy; and nothing of interest with 0% detection
accuracy. Correspondingly, the types of key frames are: selected frame
containing any clear object; uncertain frame with only uncertain objects
inside; and redundant frames without any clear or uncertain objects
appeared. Any clear object founded leads to the direct upload of the
corresponding GOP. Whenever uncertain objects detected in frames, the
collaborative validation module will be triggered next.

As shown in the right figure of Fig. 2, a person under the tree is
partly shielded, recognized as an uncertain object. Assuming that the
master camera is synchronized with all cameras and knows their initial
angle and angular velocity at the beginning, the master camera will
calculate the nearest camera as its slave pair according to the physical
location calculation. Although there is only one slave camera in one-
time validation to avoid unnecessary communication overhead, any
neighbouring camera in the cluster within a one-hop communication
range has a chance to be selected. This uncertain frame and necessary
information including the timestamp and the angle of the master cam-
era will be directly forward to the slave camera. Note that each slave
node also has functionalities of master cameras, its AI detection results
will be extracted for the matching stage to decrease the projection
error. After matching, the decision about whether to upload the frame
will be sent back to the master camera.

The object detection on each camera will keep running until no OoIs
detected in consecutive frames, then this camera will be set back to
the sleep mode. Finally, all selected frames will be suppressed by any
video coding standard (e.g., MPEG-4, H.264, H.265) and uploaded to
the server, which will then be shown in the screen of the remote control
room or stored in the server.

4. Detailed designs

In this section, we introduce the detailed designs of two main
modules of our pre-processing strategy: frame filtering module and
collaborative validation module.
4

4.1. Frame filtering

The frame filtering module is processed from dynamic background
modelling, background pruning, key frame selection, to object detec-
tion by optimized deep learning model.

4.1.1. Background modelling and pruning
Considering the change of the background for rotated cameras, it is

necessary to adaptively model the background to eliminate the possible
error when doing key frame selection at the next step. As the feature
vector for modelling the background, we design a DCS-LBP operator ex-
tended from SCS-LBP operator [38]. SCS-LBP operator was designed to
extract both spatial texture and temporal motion information between
consecutive frames. It is defined as:

SCS − LBP(x, y, t) =
(𝑁∕2)−1
∑

𝑖=0
𝑠(𝑝(𝑖,𝑡) − 𝑝(𝑖+𝑁∕2)) × 2𝑖

+ 𝑓 (𝑝(𝑥,𝑦,𝑡) − 𝜇(𝑥,𝑦,𝑡−1)) × 2𝑁∕2,

(1)

where 𝑝(𝑖,𝑡) and 𝑝(𝑖+𝑁∕2) represents grey levels of centre-sym-metric pixel
pairs in current frame 𝑓𝑡. The binary function 𝑠(𝑥) is to measure the
similarity between these pixel pairs, defined by:

𝑠(𝑥) =
{

1 𝑥 ≥ 0
0 otherwise, (2)

and the function 𝑓 (𝑡) is to assign binary values to either background or
foreground, represented as:

𝑓 (𝑡) =

{

0, if ||
|

𝑝(𝑥,𝑦,𝑡) − 𝜇(𝑥,𝑦,𝑡−1)
|

|

|

< 2.5 × 𝜎(𝑥,𝑦,𝑡−1)
1, otherwise,

(3)

where 𝜇(𝑥,𝑦,𝑡−1) and 𝜎(𝑥,𝑦,𝑡−1) are estimated mean value and standard
deviation of the pixel 𝑝(𝑥,𝑦) in previous frame 𝑓𝑡−1.

Although the SCS-LBP operator is proper for background modelling
for videos, it is built upon the assumption that the video capturing angle
is fixed. To deal with the rotation of cameras in our work, we propose
Dynamic CS-LBP (DCS-LBP) operator which consider the rotation pe-
riod of the camera. The specific format of DCS-LBP (abbreviated to 𝐷
to save paper space) is:

D(x, y, t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

(𝑁∕2)−1
∑

𝑖=0
𝐴(𝑖, 𝑡,𝑁) 𝑡 < 𝑇

(𝑁∕2)−1
∑

𝑖=0
𝐴(𝑖, 𝑡,𝑁) + 𝑓 (𝑝(𝑥,𝑦,𝑡)

−𝜇 𝑡 ) × 2𝑁∕2, 𝑡 ≥ 𝑇 ,

(4)
⎩ (𝑥,𝑦,𝑡−𝑇×⌊ 𝑇 ⌋)
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where 𝐴(𝑖, 𝑡,𝑁) = 𝑠(𝑝(𝑖,𝑡) − 𝑝(𝑖+𝑁∕2)) × 2𝑖. Define that the camera rotates
rom the initial angle and back to this angle as one rotation pe-
iod, with the timeslot 𝑇 . During the first rotation period, background
odelling is performed on individual frames. While in the following

eplicated period, the frame can always find the corresponding similar
ackground from the first period, rather than its neighbouring frame.
he representations of functions 𝑠(𝑥) and 𝑓 (𝑥) is consistent with SCS-

LBP. Both 𝜇(𝑥,𝑦,𝑡−𝑇×⌊ 𝑡
𝑇 ⌋) and 𝜎(𝑥,𝑦,𝑡−𝑇×⌊ 𝑡

𝑇 ⌋) are calculated during the first

eriod and used as the reference for following frames.
The dynamic background is modelled by a selective group of 𝐾 DCS-

BP histograms, represented as {𝑑0, 𝑑1,… , 𝑑𝐾−1}. And the weight of the
th histogram is 𝑤𝑘, denoting the probability to be the background his-
ogram. We utilize the adaptive background updating method proposed
n [38]. Once a new frame arrived, the DCS-LBP histograms for pixels
ogether with their mean values and deviations in this frame will be
alculated first. The histograms will then be sorted by a descending
rder according to the corresponding weight, and the top-𝐾 histograms

are selected as the prepared background histogram set. The current
histograms compare the similarity with the prepared histogram set
measured by histogram intersection. If the similarity is below the
threshold for all background histograms, the pixel is considered as
the foreground, otherwise, the pixel is assigned to 0 for background
pruning and the background histogram set is adaptively updated by the
highest similarity value. The performance of DCS-LBP when compared
with the SCS-LBP and mixed Gaussian model is shown in Fig. 3. It is
obvious that the DCS-LBP can present a clearer and cleaner foreground.

4.1.2. Model optimization
As one of the state-of-the-art object detection models, the SSD

model [12] outperforms by higher accuracy and detection speed, which
is the selection of our work. However, it contains 11 convolutional
layers and 8732 prior boxes for each output class, which cause heavy
computational burdens for cameras. To efficiently detect redundant
frames on surveillance cameras, we optimize the SSD model to a light-
weight structure on both structural and computational aspects: model
compression and convolutional acceleration.

Model compression. Depending on the sparsity of deep learning
model, it can be compressed unstructured [39,40] with higher precise
but relying on specific libraries and platforms supports. Conversely,
structural compression by channel pruning [41] can fully exploit the
redundancy of inter feature maps and directly applied on SSD model
without extra libraries required. Besides, this layer-by-layer pruning is
suitable to compact single brunch model like the SSD model, which has
11 convolutional layers to be operated.

Two main steps are applied to the target model. Firstly, the most
representative channels will be selected, while redundant channels are
filtered. Secondly, the selected channels will be reconstructed as the
new feature map. For calculation convenience, we denote that a feature
map in the SSD model has 𝑐 channels; the size of convolutional filter 𝑊
is 𝑛×𝑐×𝑘ℎ×𝑘𝑤; and the size of input volumes 𝑋 is 𝑁×𝑐×𝑘ℎ×𝑘𝑤, deriving
an 𝑁 × 𝑛 output matrix 𝑌 . In this denotation, 𝑁 is the number of
samples, and 𝑛 is the number of output channels, together with 𝑘ℎ ×𝑘𝑤
size of the kernel. The pruning process can be formulated as:

arg min
𝛽,𝑊

1
2𝑁

‖

‖

‖

‖

‖

𝑌 ′ −
𝑐
∑

𝑖=1
𝛽𝑖𝑋𝑖𝑊

𝑇
𝑖

‖

‖

‖

‖

‖

2

𝐹

subject to ‖𝛽‖0 ≤ 𝑐′.

(5)

Inside of the Frobenius Norm ‖⋅‖𝐹 , 𝛽𝑖, 𝑋𝑖, 𝑊𝑖 represent the status
of channel 𝑖 (i.e., selected or not selected), new input which pruned
channel 𝑖 from 𝑋, and new filters which pruned channel 𝑖 from 𝑊 ,
respectively. 𝑌 ′ is specially designed for the whole model pruning, in-
dicating all outputs from each layer. During this sequential pruning, the
accumulated error should be minimized on each output feature maps.
So the constraint condition of this formula implies that the retained
channels should be fewer than or equal to desired channels, which can
5
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Fig. 4. An example of the OaA algorithm.

be adjusted by the speed-up ratio in training. The optimization of this
formula requires two steps. That is, the channel selection step can be
calculated when 𝑊 is fixed, while the feature map reconstruction step
will be further processed when 𝛽 is fixed. Note that the original code
provided by He et al. [42] was specially designed for the GPU-only
Caffe environment. We change its settings and test it on a CPU-only
environment, and acquire satisfactory results shown in Section 6.

Convolutional acceleration. From the computational aspect, con-
volutional layers are the most time-consuming layers in model run-
ning [15]. Especially in SSD model, 11 convolutional layers bring
great computational burdens for surveillance cameras. It is necessary to
accelerate the convolutional calculation of the SSD model by a simple
and fast way.

Taking 𝑀 × 𝑀 and 𝑚 × 𝑚 as the size of inputs and kernels re-
pectively, each kernel takes 𝑂(𝑀2𝑚2) computational complexity to
alculate dot products for a single forward and backward propagation.
he fast Fourier transform (FFT) [43] is commonly used for convolu-
ional optimization, because the Hadamard product in the frequency
omain is simpler than matrix cartesian product in the space domain.
onetheless, its complexity 𝑂(𝑀2𝑙𝑜𝑔2𝑀) is still not satisfied enough

or low latency requirement in commodity surveillance systems. For
he further reduction on calculation complexity, the overlap-and-add
OaA) optimization technique [44] can promote the convolutional
cceleration, holding the complexity of 𝑂(𝑀2𝑙𝑜𝑔2𝑚). Given an instance,
128 × 128 grey level frame with a 2 × 2 kernel will get the complexity
f 𝑂(1282×4) for standard convolution, 𝑂(1282×7) for FFT, and 𝑂(1282×
) for OaA. It implies that the OaA achieves a 1/7 less computational
omplexity than FFT and a 1/128 less than the standard dot product.
roved from our evaluation results in Section 6, this method further
ccelerates the running of the SSD model on cameras after structural
ptimization, which indicates the possibility to speed up deep learning
odel running from both structural and computational aspects.

Fig. 4 shows a simplified example of 2D grey image processing by
aA, which can be easily extended to 3D colourful images. The grey

evel frame size in the example is 4 × 4 and the kernel size is 2 × 2
ith the padding and stride rate 1. Firstly, the frame is divided into 4
locks with 2 × 2 size represented by four different colours in Fig. 4,
eeping it the same with the kernel size in convolution. The left upper
mage is the input array with its kernel, while the right upper image is

heir convolutional result calculated by the standard dot products. The
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rest lines illustrate the processing flow of the OaA algorithm, including
splitting, separated convoluting, overlapping and adding stages. In the
splitting stage, four blocks are split from the original input array to four
sub-arrays. Each sub-array will be separately convoluted by the same
kernel (orange), padding rate and stride with the standard convolution,
resulting in four convolutional results. These four results are adjacently
added together pair by pair with the overlap rate of 𝑚 − 1 (the kernel
size generally denoted by 𝑚 × 𝑚), which is 1 in this example. As
labelled by yellow dot boxes in Fig. 4, two adjacent convolutional
middle results are added on one column while keeping other column
concatenated without changing, leading to results shown on the right
bottom side. These two further results will then perform overlap and
add processes on 𝑚− 1 rows to get the final convolutional result of the
input array. It is obvious that the result calculated by OoA is as same
as the standard convolutional result given in the first row. During the
OoA processing, the separated convolution stage is also computed in the
frequency domain for acceleration. The separation in OaA can reduce
the convolutional scale, while the overlap and add operations conduct
lower computational complexity than dot product.

4.2. Collaborative validation

The light-weight deep learning models have lower detection ability
than the original model with massive layers. Besides, environmental is-
sues in real surveillance scenarios may also cause potential information
loss:

1. Shielding: Buildings, plants and facilities are natural barriers for
monitoring, especially in modern communities. Concerned objects
may be partially or totally shielded by these barriers, driving a lower
detection accuracy.

2. Blind area: Different from omnidirectional cameras, both static and
dynamic cameras have a limited monitoring range. The OoIs which
just come into the scene or just leave the scene appear partially,
leaving uncertain detection results.

Inspired by the 𝑀𝐶3 scheme [27], we design a collaborative vali-
dation strategy among neighbouring cameras to compensate accuracy
loss caused by model compression and environmental shielding. Such
validation depends on the share of knowledge on target objects within
neighbouring nodes built upon the edge computing architecture. The
validation is performed locally and communicated within camera pairs.
The master camera will trigger the validation module when the un-
certain frame is detected. Concretely, the design of this collaborative
validation module is shown below.

Due to rotations of cameras, it is quite challengeable to select spe-
cific slave camera. In our work, the master camera broadcast validation
requests to all neighbouring cameras within one-hop communication
range. It implies that all neighbouring cameras have abilities to perform
as the slave camera and assist in validation. The validation request sent
to slave cameras includes the uncertain frame, the physical location
information of requested objects and the corresponding timestamp.
Once neighbouring cameras receive the request, it will project the
relative locations of these objects in their views and localize them in
the corresponding recorded frame. To realize this, we set each camera
can store the 𝑆-length video clip in its flash memory and refresh it
when a new video clip generated, where the length 𝑆 is slightly larger
than the highest broadcast time among its neighbouring camera set.
Note that such slave camera selection scheme has lower privacy leakage
risk [36] as the frame sharing only happens in a short range (one-hop
communication distance).

Depending on the pin-hole imaging theory, we design a linear
image projection algorithm for validation target localization. Firstly,
the uncertain object 𝑢 whose detection accuracy is lower than the
threshold 𝑇 (𝑇 = 50% in our experiments) is marked in the box by the
former optimized SSD model. As illustrated in Fig. 5(a), its estimated
6

type 𝑡𝑢, centroid location (𝑥𝑝𝑢, 𝑦𝑝𝑢), size (maximum occupied pixels
Fig. 5. Illustrations for collaborative validation calculation.

lengthways) 𝑠𝑝𝑢 in the frame, and the corresponding timestamp 𝑡 will
be shared to all neighbouring cameras. Its physical location (𝑥𝑢, 𝑦𝑢) is
represented by the distance 𝑑𝑎 between object and camera, and the
angle 𝛼𝑎 is measured between the object and its axle line. We assume
that the deployed height and focal of each camera are pre-known. The
distance 𝑑𝑎 on master camera 𝑎 is calculated by the pin-hole projection
formula [45]:

d𝑎 =
ℎ𝑢 × 𝑓
𝑠𝑝𝑢 + ℎ𝑎

, (6)

where ℎ𝑢 is the practical height of the undefined object 𝑢, 𝑓 is the focal
of camera (same for each camera), and ℎ𝑎 is the deployed height of
the master camera 𝑎. In our experiment, we set the average heights for
three detected classes as: 170 cm for human, 20 cm for animals, 150 cm
for transportation. So the value of ℎ𝑢 can refer to these settings related
to the estimated type 𝑡𝑢.

For the angle calculation, we assume the angle between the centroid
of the undefined object and axle line in the frame is the same with the
angle between the object and the normal direction of cameras in the
physical space. In Fig. 5(a), the angle 𝛼𝑎 can be easily calculated by
the location of centroid (𝑥𝑝𝑢, 𝑦𝑝𝑢) in frame 𝑓 and transferred as same
as the 𝛼𝑎 in Fig. 5(b). To imply the east or west of the angle, it will
be represented by the positive or negative value for differentiating.
Considering the uncertain object is not lying into the monitoring area of
camera 𝑐 at the request timestamp, the camera 𝑏 is taken as an example
which received the above-mentioned information. It needs to calculate
the relative angle 𝜃𝑎𝑏, the relative distance 𝑑𝑎𝑏 with the master camera
𝑎, to further calculate the relative angle and distance with the uncertain
object for frame localization.

Specifically, the calculation of 𝜃𝑎𝑏 depends on the normal direction
of their projection areas for camera 𝑎 and 𝑏. Assuming the initial normal
directions are pre-known and set to 0, the current normal direction 𝑐𝑖
for camera 𝑖 is calculated by the timestamp 𝑡, the rotation period 𝑇 ,
and the angular velocity 𝜔𝑖 by:

𝑐𝑖 = 𝜔𝑖(𝑡 − 𝑇 × ⌊

𝑡
𝑇
⌋). (7)

And the relative angle 𝜃𝑎𝑏 can be apparently calculated from 𝑐𝑎 and 𝑐𝑏.
The relative distance 𝑑𝑎𝑏 is calculated by their fixed physical coordina-
tion. Furthermore, the distance 𝑑𝑏 for the camera 𝑏 can be calculated
according to the shared information, 𝑑𝑎 and 𝛼𝑎,:

𝑑𝑏 =
√

(𝑑𝑎 sin(𝜃𝑎𝑏 − 𝛼𝑎))
2 + (𝑑𝑎𝑏 − 𝑑𝑎 cos(𝜃𝑎𝑏 − 𝛼𝑎))

2. (8)

And the angle 𝛼𝑏 for the camera 𝑏 can be calculated as:

𝛼𝑏 = arccos
𝑑𝑎𝑏 − 𝑑𝑎 cos(𝜃𝑎𝑏 − 𝛼𝑎)

𝑑𝑏
. (9)

Similarly, such physical distances and angles can be inversely trans-
ferred to the size 𝑠𝑝𝑏 and the angle 𝛼𝑏 in the frame 𝑓𝑏𝑡 of the camera 𝑏
at timestamp 𝑡 according to the reverse function of (6). A 𝑠𝑝𝑏 × 𝑠𝑝𝑏 box
will be drawn as the localization of uncertain object 𝑢 in the camera 𝑏.
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Fig. 6. Localization and matching illustrations. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

However, as the projection from the physical world to pictures
will lose parameters in one dimension, this simplified algorithm will
bring potential accuracy loss. Correspondingly, we design a matching
mechanism for error compensation. The frame captured in validating
timestamp is input into the optimized SSD model and any OoI will be
marked in a box by this model. The matching mechanism will find
out the closest detection box with the localized box acquired in the
previous step. If the shortest distance between two centroids of regions
is not more than threshold 𝑇𝑚𝑎𝑡𝑐ℎ, we consider these two regions as
the same region, where we will match the calculated location with
this detected location. The threshold 𝑇𝑚𝑎𝑡𝑐ℎ is set by the experimental
average of multiple measurements. Illustrated in Fig. 6, the shielded
humans labelled in the red box of the left picture is localized as the
same red box in the second picture by calculation. There are two
OoI detection regions labelled in blue and yellow boxes in Fig. 6(b).
According to distances between the localized box and detection boxes,
the red box is relatively closer to the blue box, and the distance is
shorter than the threshold 𝑇𝑚𝑎𝑡𝑐ℎ. So we will match the red box with
the blue box.

After the matching stage, three kinds of results will be given on each
camera by the validation module, which are sent as feedbacks to the
master camera: (i) Drop, when there is no OoI found from the matched
region in cameras; (ii) Confirm, when there is OoI found in the matched
region; and (iii) Uncertain, when the OoI in the matched region also
has the detection accuracy lower than 50%. Taking all feedbacks from
neighbouring cameras into consideration, three kinds of actions will be
taken by the master camera accordingly:

1. Ignore: When all neighbouring cameras give ‘‘drop’’ feedback, the
master camera will not select corresponding GOP for transmission.

2. Transmit: When there are any ‘‘confirm’’ feedback, the master
camera will directly transmit the GOP.

3. Transmit but uncertain: If there are no ‘‘confirm’’ feedback but
‘‘uncertain’’ feedback exists, the master camera will transmit the
GOP, leaving it to the server for further checking.

5. Implementation

As shown in Fig. 7, we implement a prototype of the whole surveil-
lance system on two sides: the edge camera side and the server side. On
the camera side, we use Raspberry Pi 3bs for experiments (labelled in
the blue box), embedded with ARM Cortex-A53 and no GPU. Supported
by 802.11n WiFi module and external camera module v2, they perform
as surveillance cameras with video capturing, processing and wireless
communication functions. To simulate both static and dynamic cameras
deployed in neighbouring locations, we select the camera module on
the Raspberry Pi as a static one and a commodity external camera
with a USB connection as the dynamic one with a fixed rotation speed
(labelled in yellow boxes). We utilize the motioneyeos API proposed
7

Fig. 7. Prototype illustration. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

in [6] as the motion detection function in each camera. It would
increase the capturing frame rate for cameras when motion detected
while remaining to the sleep mode in other time periods. The frame
rate in the sleep mode and the active mode are 15 Hz and 32 Hz,
respectively. And we set the capturing resolution as the typical 640*480
dpi.

What is more, the Linux system computer performs as the server,
with 64-bit Ubuntu 14.04 LTS version, 8 core 3.6 GHz Intel Core
i7 CPU and Kabylake GT2 770 GPU. The detection performance of
the light-weight deep learning model is visualized on the Raspberry
Pis connected monitor at the right side. And the performance of the
original deep model is visualized on the monitor at the left side, which
performs as the ground truth for the detection accuracy evaluation.

Both the light-weight SSD model and its original version are trained
locally, while on different datasets. As good performances of mod-
els also rely on the high-quality training set, we utilize MS COCO
dataset [46] published by Microsoft, because of its great training re-
sults. As mentioned before, there will be 8732 prior box results for
each detected class in the SSD model, while 90 classes in MS COCO
dataset require a large number of calculations. From our observations,
some objects in residential communities have no need to be detected
even it is dynamic, such as plants (e.g., trees, grass, flowers) and
buildings. While for other facilities like doors, mailboxes, and exercise
facilities, etc., we consider that their movements are involved in human
activities. So as long as we detect humans in frames, these facilities will
also be included in selected frames, with no need for extra detection. At
last, we focus seven categories in MS COCO dataset: human, dog, cat,
car, bicycle, bike, and bus (especially for campus scenario), which are
frequently appeared in captured videos and have potential risks in our
daily life. Additionally, these selected categories have similar features:
dog and cat are all animals with four feet and small shapes; car, bicycle,
bike, and bus are transportation tools with wheels. So we combine
these similar categories into three kinds to reduce its running time
on surveillance cameras: human, transportation, and animal. We filter
out and summarize the original image set and XML annotation file of
MS COCO dataset, and finally acquire 8462 samples for people, 10 190
samples for transportation, and 3759 samples for animals in total. The
light-weight model is then trained on this processed MS COCO dataset.
The 10% of total samples will perform as testing samples while another
90% samples perform as training samples. It is trained for light-weight
models on Raspberry Pis. But on the server side, the original SSD model
is trained on the original MS COCO dataset as the ground truth.

For the collaborative validation module, the master and the slave
camera will first share their location information, where the relative
distances and angles can be measured. We realize this module by
writing approximately 200 lines of Python codes on master and slave
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Table 2
Compression ratio comparisons for both static and dynamic cameras.

Feature Static Dynamic

Original 325M 349M
MPEG-4 133M(59.1%) 189.4M(45.8%)
Litedge 96.8M(70.2%) 123.2M(64.7%)
Ours 115.7M(64.4%) 135.6M(61.1%)

nodes, including information broadcasting, projection calculation, and
matching. To avoid packet loss, all information sharing between them
are in multiple times until getting the ‘‘received’’ feedback.

6. Evaluation

To prove the efficiency of the proposed strategy, experiments are
conducted on real-collected videos. Two kinds of videos are captured by
either static or dynamic cameras in the same residential communities
simultaneously. Three main indicators are evaluated in this section. At
the beginning, the compression ratios (frame deduction ratio) for both
static and dynamic cameras are present in Section 6.1, which is the
main target of this paper. Secondly, Section 6.2 evaluates the processing
latency on both calculation and transmission. Additionally, Section 6.3
evaluates the accuracy performances, including the detection accuracy,
the validation compensation ratio, and the overall filtering accuracy.
The tradeoff between latency and accuracy is also an important indica-
tor of the performance, which is finally discussed by comparisons with
controlled experiments and related works in Section 6.4.

6.1. Compression ratio evaluation

Methodology. Two video traces collected from the same residen-
ial community by both static and dynamic cameras are utilized for
ompression ratio comparisons. Three benchmarks are introduced to
ompare with our strategy:

. Original: This is the baseline of the comparison, without any com-
pression on the video.

. MPEG-4 [47]: MPEG-4 is a content-aware video coding standard,
which separates the video objects as the foreground and describes
them by motion, shape, and texture information. The other pixels
are background, which has a higher compression ratio than the
foreground.

. Litedge [48]: Litedge is based on light-weight deep learning model
for content-aware frame filtering, while it detects frame-by-frame
with a constant sampling ratio.

he video size 𝑄𝑐𝑜𝑚 compressed by these four methods are recorded to
alculate the compression ratio 𝑅 with the original video size 𝑄𝑜𝑟𝑖 by:

𝑅 =
𝑄𝑜𝑟𝑖 −𝑄𝑐𝑜𝑚

𝑄𝑜𝑟𝑖
× 100% (10)

Result. Table 2 summarizes compression ratios for four methods
n both static and dynamic cameras. It is same for all compression
ethods that the compression ratio for videos with a dynamic back-

round is lower than the static background, because of the richer
nformation contained in it. Our method has a similar compression
atio with Litedge but slightly lower because of our GOP transmission
trategy. Compared with the frame selection and transmission in Lit-
dge, the GOP transmission can avoid large distortion for surveillance
pplications, especially when trajectories or motion status of objects are
oncerned. Note that our method is compatible with coding standards
ike MPEG-4, the compression ratio can be lower than the number
ecorded in this table in real deployments.
8

.2. Latency evaluation

Methodology. In the latency evaluation, we aim to answer the
ollowing three questions in latency evaluations:

. How much calculation latency can be saved by the optimized SSD
model?

. How much processing latency is further introduced by the collabo-
rative validation?

. How much transmission latency can be saved by the proposed
scheme?

To answer the first question, we select key frames from both static
nd dynamic videos and aggregate them as inputs for the optimized
nd original SSD models. The processing time for each frame will be
ecorded and drawn as a CDF figure. For the second question, uncertain
rames acquired from the optimized SSD model will be input into the
ollaborative validation module for processing latency measurement.
nd for the third question, the overall transmission latency is measured
ith a 100k/s uploading speed from the camera to the server. Both the
alidation latency and the transmission latency are extracted from the
og file.
Result. Fig. 8(a) shows the CDF of the processing latency for the

ptimized SSD model on each frame, compared with the original model
unning on cameras. We observe that the average latency is 0.049 s
or the optimized model, while it is 0.06 s for the original model,
eading to the around 18.3% deduction. It proves that our optimization
ethod can help to accelerate model running and also fit the model into

ight-weight devices which have limited computational capabilities.
As recorded by the log file, the average latency for the collaborative

alidation module is 2.79 s. It is good to see that the matching stage
mong neighbouring cameras is performed in a distributed way, where
nly the highest matching time affects the overall validation latency,
ather than the total delay.

According to the real measured transmission latency, we found that
hen the transmission speed keeps the same, the transmission latency

s directly related to the sizes of videos. So the transmission deduction
endency is consistent with the compression ratio shown in Table 2.

Finally, we calculate the real-time latency for each frame processed
n situ, starting from its capturing, to processing on cameras, to consid-
ring for transmission, until its arrival to the server. It is calculated
hrough the total latency recorded for a video clip divided by its
umber of frames. And the average result shows 0.27 s for each frame.
nder a 32 Hz capturing rate, the camera can easily handle such
rocessing stage with a 3M buffer.

.3. Accuracy evaluation

Methodology. To measure the filtering accuracy on the optimized
odel, we first run the optimized model on the camera side, with the

riginal model running on the server as the ground truth. Taking the
elected key frame set as the input, the accuracy difference between
hem implies two conditions: frames are failed to be filtered or mistak-
nly considered as redundancy. The first kind of frames becomes the
ompensation target in collaborative validation module. As the results
re quite stable after over 500 attempts, we only show accuracy results
or the former 500 key frames in result figures.

We further define the compensation level to evaluate the perfor-
ance of collaborative validation module. We denote the redundant

rames founded by light-weight AI as 𝑓𝐴𝐼 ; the newly detected redun-
ant frames in validation module as 𝑓𝑣𝑎𝑙; and the number of real
edundant frames detected by the original model running on PC as 𝑓𝑟𝑒𝑎𝑙.
hen, the final accuracy 𝐴𝑐𝑐 can be represented by this compensation
atio 𝑅𝑐𝑜𝑚:

𝑐𝑐 =
𝑓𝐴𝐼 + 𝑅𝑐𝑜𝑚 =

𝑓𝐴𝐼 + 𝑓𝑣𝑎𝑙 (11)

𝑓𝑟𝑒𝑎𝑙 𝑓𝑟𝑒𝑎𝑙
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Fig. 8. Evaluations on latencies, accuracies, and their tradeoff.
Table 3
The summarization on the overall tradeoff comparisons.

Method Original Filtering-Only Litedge [48] Zhang et al. [30] Ours

Indicators Accuracy Latency Accuracy Latency Accuracy Latency Accuracy Latency Accuracy Latency
Results 93% 676 s 82.3% 301.62 s 89.23% 372.86 s 90% 329.88 s 92.6% 332.9 s
Balance ratio 0.138 0.273 0.239 0.273 0.278
Results. As shown in Fig. 8(b), the optimized model running on our
rototype has a quite similar accuracy with the original model running
n PC. The average frame detection accuracy on the optimized model is
5.6% and 90.2% on the original SSD model. Besides, the compensation
atio is 𝑅𝑐𝑜𝑚 = 7%, leading to the 92.6% overall accuracy on redundant

frame detection of our method. It illustrates the improvement provided
by the IoT collaboration module.

6.4. Tradeoff evaluation

Methodology. The tradeoff between accuracy and latency can com-
rehensively imply the efficiency of the proposed scheme. Key frames
elected from videos with static and dynamic backgrounds are ag-
regated as inputs for all methods. We first evaluate the tradeoff of
he light-weight AI part, compared with three popular light-weight AI
tructures: DeepMon [15], DeepEye [16], and MobileNet [17]. We then
valuate the tradeoff of the overall scheme with controlled experiments
nd the related work:

. Original transmission: Its accuracy is measured when running the
original SSD model on the server, performing as the baseline in the
comparison.

. Filtering-only: Its accuracy is measured when running the light-
weight SSD model on cameras. This method is a controlled exper-
iment where only the frame filtering module works.

. Litedge [48]: This method is designed to be suitable only for static
surveillance scenario and detect frame-by-frame with a constant
sampling ratio.

. Zhang et al. [30]: This is a closely related work proposed in the edge
computing scheme. It assigns priorities of frames by vision-based
object detection algorithms and schedules them for transmission in
controllers.

The latencies of all these methods are measured from video record-
ng to receiving on the server. Considering that higher accuracy and
ower latency illustrates better performance, we simply divide the
ccuracy with latency to represent the balance ratio as the indicator of
he tradeoff.
Result. The tradeoff of light-weight AI part is shown in Fig. 8(c),

ur design achieves a better balance between detection accuracy and
atency. Specifically, the balance ratio of DeepMon is 27.98, 18.1
or DeepEye, 65.55 for MobileNet, and 1746.9 for our optimization.
able 3 implies the feasibility of our light-weight AI design and the
ossibility of the joint optimization on model structure and computa-
ion. Some observations can be noticed from respective comparisons.
9

At first, the accuracy after adding the collaborative validation module
is increased, and the higher balance ratio of our strategy shows that the
extra latency overhead is acceptable. Secondly, compared with Litedge,
it is apparent that our method performs better when processing frames
with dynamic backgrounds. At last, our method has higher accuracy
than Zhang’s method [30], depending on the powerful deep learning
tool. Due to the frame scheduling strategy designed on the controller in
their method, the frames aggregated to controllers cause non-negligible
latency overhead, which reduces their balance ratio. On the contrary,
our extra computational latency introduced by IoT collaboration has
relatively lower side effect for our balance ratio.

7. Summary and conclusion

This work is based on the observation that there exists a large
number of redundant frames in surveillance videos which contain less
information for surveillance applications. Spatially, simply reducing the
sampling ratio or filtering frames by dynamic detection in commercial
cameras still have room to enhance the compress ratio. To further
reduce the transmission burden of surveillance videos via wireless spec-
trum, in this paper, we present an efficient video pre-processing scheme
composed of light-weight AI and IoT collaboration. Respectively, it
solves two main problems in AI-based frame filtering: (a) The limited
computational capability of surveillance cameras; (b) The accuracy loss
caused by model compression and environmental shielding.

Our method considers both static or dynamic surveillance scenarios.
After dynamic background modelling by the novel DCS-LBP opera-
tor, the redundant GOPs in raw videos are then filtered by content-
aware key frame selection on edge cameras, which is realized by a
light-weight SSD model to fit their limited computational capabili-
ties. The object detection model is optimized by channel pruning and
convolutional acceleration via OaA method.

The accuracy loss caused by model shrinkage and environmental
shielding is compensated by a collaborative validation module among
neighbouring cameras within one-hop range. The uncertain target is
localized and re-identified by the slave camera and provide feedback
to the master camera for uploading decision making.

Evaluations based on real-collected videos prove the feasibility of
this strategy. It is shown that our method can dramatically reduce the
transmission quantity, together with a relatively high balance ratio
between system accuracy and latency among controlled experiments
and state-of-the-art methods.

To further increase the utility of our method, we highlight several
interesting future directions. On the one hand, considering that more
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smart types of cameras are presented in the market, such as tracking-
driven cameras [49] whose rotation speed is not fixed while followed
with targets, the rotation-related discussion in this paper should be
more flexible when dealing with this scenario. On the other hand, more
efficient model compression methods can be explored especially when
there exist strong spatial and temporal correlations among surveillance
cameras. For example, distributed learning [50] or teacher–student
knowledge distillations [51] can help to further accelerate or compress
the model.
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