
Litedge: Towards Light-weight
Edge Computing for Efficient
Wireless Surveillance System

Yutong Liu1, Linghe Kong1, Muhammad Hassan1, Long Cheng2,
Guangtao Xue1, Guihai Chen1

1 Shanghai Jiao Tong University, China
2 Clemson University, USA

Wireless VS. Wired surveillance deployment

Wired surveillance system:
Massive cables,
inflexible deployment,
difficult and expensive maintenance.

Wireless surveillance system:
Much less cables,
flexible deployment,
easy and cheap maintenance.

Choice!!!

Heavy wireless transmission burden

Server

Massive video streams generated

Resource-constraint
wireless transmission

Low
QoS!!!

Observations
1. Large redundancy exists in collected surveillance videos.

Only 6 clocks have more than 1 object of interest (OoI) in videos.

Redundancy

Observations
2. Environment shielding introduces error in frame analysis.

The tree shielding on
two monitored persons.

Observations
3. Surveillance cameras have neighboring deployment and allow information sharing.

Overlapping monitoring area

Collaborative communication

Intuitions
Local-processing on cameras:

Type Method Advantage Disadvantage

1. Frame filtering Wu et al. [1] Fast Coarse filtering

Zhang et al. [2] Accurate Long processing latency

2. Frame compression Mitchell et al. [3] Standard Relatively less redundancy reduction

3. Rate deduction Zhang et al. [4] Simple Too naive

4. Collaborative
computation among
cameras

Collins et al. [5] First Not utilized for error compensation

Natarajan et al. [6] Scheme
proposal

A generalized inspiration

OURS Light-weight frame
filtering & collaborative
error compensation

Fast and
accurate

Future work

Litedge’s Architecture
A light-weight edge computing scheme in wireless surveillance system for QoS improvement.

Surveillance cameras distribution diagram

Master

Camera

Slave

Camera
Shielded Non-

Shielded

Remote Control Center

Motion

detection
Motion

detection

Light-weight

AI detection

Light-weight AI

re-identification

Information

Sharing

Feedback

Light-weight video

compression

Collaborative

validation

Light-weight video compression

Pruned and accelerated
object detection model

OoI detected

Input: Frame pruned Model: model pruning and
convolution acceleration

Output: class deduction

Model pruning

Input

Images

VGG-16

through

Conv5 layer

(38*38*512)

Conv6

(19*19*1024

FC6)

Conv7

(19*19*1024

FC7)

Conv8

(10*10*512)
Conv9

(5*5*256)
Conv10

(3*3*256)
Conv11

(1*1*256) 8
7

3
2

 p
r
io

r
b

o
x

es
 p

e
r
 c

la
ss

N
o

n
-M

a
x

im
u

m

S
u

p
p

r
e
ss

io
n

Final detectionsInput images

Channel reconstructionChannel selection Original

Channel selection

Channels: c
Convolutional filter W: n × c × kh× kw

Input volumes X: N × c × kh× kw

Output matrix Y: N × n

To keep the reconstruction error as small as
possible, select the most representative channels:

βi represents the status of channel i (i.e., selected or not selected),
Xi represents new input which prunes channel i from X,
and Wi represents new filters which prunes channel i from W
Channel selection: fix W
Reconstruction: fix β

Convolutional acceleration

Convolutional method Computational complexity

Simple dot product O(M2m2)

FFT O(M2log2M)

Overlap-and-Add (OaA) O(M2log2m)

Note: Input size M*M, kernel size m*m

Choice!!!

1 2 3 0

1 2 1 0

2

3 2 1 0

2 3 1

Input Array:4*4

1 1

1 1

Kernel:2*2

8 4 0

7 8 5 1

Result:5*5

84

1

5 3 0

4 8 6 2

31

0

3

2 4 5 4

Padding:1

Stride:1

1 2

3 2

3 0

1 0

1 2

1. Split

2 2

1 0

3 1

2. Separated convolution

044

033

011

3 7 4

1 3 2

2 4 2

1 3 2

4 8 4

3 5 2

4 5 1

1 1 0

3 4 1

3. Overlap

8 4 084

5 3 0

3 5 3 1

31

0

7 8 5 1

1

1 3 3 1 0

3

2 4 5 4

+
4. Add

Collaborative validation

Unrecognized

object
a

c b

Unrecognized

object

<Tmatch

>Tmatch

Implementation

Server side

Edge side

Two Raspberry PisTwo Cameras at

different angles

• Surveillance cameras:
Raspberry Pi 3b embedded with ARM
Cortex-A53 and no GPU. Supported by
802.11n WiFi module and external
camera module v2
• Server:
64-bit Ubuntu 14.04 LTS version, 8 core
3.6GHz Intel Core i7 CPU and Kabylake
GT2 770 GPU.

QoS evaluations
1. Latency evaluation

0.049s

0.06s

QoS evaluations
2. Accuracy evaluations

QoS evaluation
3. Overall evaluation

 DeepMon [7]: cache-based convolutional optimization and
tensor decomposition

 DeepEye [8]: memory caching and SVD-based model
compression

 MobileNet [9]: depth-wise separable convolution,
combined by a single-filter derived convolution and 1*1
pointwise convolution

Conclusion
Light-weight video compression

Collaborative validation on cameras

Surveillance system implementation and evaluation

Possible future directions:

Low illumination and bad weather effects should be eliminated.

Distortion rate should be further decreased by proper video
compression.

Monitoring scenarios and camera types can be extended.

Yutong Liu
isabelleliu@sjtu.edu.cn

Reference
[1] D. Wu, C. Song, H. Luo, Y. Ye, H. Wang, Video surveillance over wireless sensor and actuator networks
using active cameras, IEEE Transactions on Automatic Control 56 (10) (2011) 2467–2472.

[2] T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, S. Banerjee, The design and implementation of a wireless
video surveillance system, in: ACM/IEEE Mobicom, Paris, France, 2015, pp. 426–438.

[3] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, D. J. Legall, Mpeg video compression standard 99 (5) (1996)
1666–1675.

[4] Y. Zhang, H. Wang, D. Zhao, Up-sampling dependent frame rate reduction for low bit-rate video coding,
in: DCC, Snowbird, Utah, USA, 2011, p. 489.

[5] R. T. Collins, A. J. Lipton, H. Fujiyoshi, T. Kanade, Algorithms for cooperative multisensor surveillance,
Proceedings of the IEEE 89 (10) (2001) 1456–1477.

[6]P. Natarajan, P. K. Atrey, M. S. Kankanhalli, Multi-camera coordination and control in surveillance systems:
A survey, TOMCCAP 11 (4) (2015) 57:1–57:30.

[7] H. N. Loc, Y. Lee, R. K. Balan, Deepmon: Mobile gpu-based deep learning framework for continuous
vision applications, in: MobiSys, Niagara Falls, NY, USA, 2017, pp. 82–95.

[8]A. Mathur, N. D. Lane, S. Bhattacharya, A. Boran, C. Forlivesi, F. Kawsar, Deepeye: Resource efficient local
execution of multiple deep vision models using wearable commodity hardware, in: MobiSys, Niagara Falls,
NY, USA, 2017, pp. 68–81.

[9]A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam,
Mobilenets: Efficient convolutional neural networks for mobile vision applications, CoRR abs/1704.04861.

