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Wireless VS. Wired surveillance deployment

Wired surveillance system:
Massive cables, 
inflexible deployment, 
difficult and expensive maintenance.

Wireless surveillance system:
Much less cables, 
flexible deployment, 
easy and cheap maintenance.

Choice!!!



Heavy wireless transmission burden

Server

Massive video streams generated

Resource-constraint 
wireless transmission

Low 
QoS!!!



Observations
1. Large redundancy exists in collected surveillance videos.

Only 6 clocks have more than 1 object of interest (OoI) in videos.

Redundancy



Observations
2. Environment shielding introduces error in frame analysis.

The tree shielding on
two monitored persons.



Observations
3. Surveillance cameras have neighboring deployment and allow information sharing.

Overlapping monitoring area

Collaborative communication



Intuitions
Local-processing on cameras:

Type Method Advantage Disadvantage

1. Frame filtering Wu et al. [1] Fast Coarse filtering

Zhang et al. [2] Accurate Long processing latency

2. Frame compression Mitchell et al. [3] Standard Relatively less redundancy reduction

3. Rate deduction Zhang et al. [4] Simple Too naive

4. Collaborative 
computation among 
cameras

Collins et al. [5] First Not utilized for error compensation

Natarajan et al. [6] Scheme 
proposal

A generalized inspiration

OURS Light-weight frame 
filtering & collaborative 
error compensation

Fast and 
accurate

Future work



Litedge’s Architecture
A light-weight edge computing scheme in wireless surveillance system for QoS improvement.

Surveillance cameras distribution diagram
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Light-weight video compression 

Pruned and accelerated
object detection model

OoI detected

Input: Frame pruned Model: model pruning and 
convolution acceleration

Output: class deduction



Model pruning
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Channel selection

Channels: c
Convolutional filter W: n × c × kh× kw

Input volumes X: N × c × kh× kw

Output matrix Y: N × n

To keep the reconstruction error as small as 
possible, select the most representative channels:

βi represents the status of channel i (i.e., selected or not selected), 
Xi represents new input which prunes channel i from X, 
and Wi represents new filters which prunes channel i from W
Channel selection: fix W
Reconstruction: fix β



Convolutional acceleration

Convolutional method Computational complexity

Simple dot product O(M2m2) 

FFT O(M2log2M) 

Overlap-and-Add (OaA) O(M2log2m)

Note: Input size M*M, kernel size m*m

Choice!!!
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Collaborative validation

Unrecognized 

object
a

c b

Unrecognized 

object

<Tmatch

>Tmatch



Implementation

Server side

Edge side

Two Raspberry PisTwo Cameras at 

different angles

• Surveillance cameras:
Raspberry Pi 3b embedded with ARM 
Cortex-A53 and no GPU. Supported by 
802.11n WiFi module and external 
camera module v2
• Server:
64-bit Ubuntu 14.04 LTS version, 8 core 
3.6GHz Intel Core i7 CPU and Kabylake
GT2 770 GPU. 



QoS evaluations
1. Latency evaluation

0.049s

0.06s



QoS evaluations
2. Accuracy evaluations



QoS evaluation
3. Overall evaluation

 DeepMon [7]: cache-based convolutional optimization and 
tensor decomposition

 DeepEye [8]:  memory caching and SVD-based model 
compression

 MobileNet [9]:  depth-wise separable convolution, 
combined by a single-filter derived convolution and 1*1 
pointwise convolution



Conclusion
Light-weight video compression

Collaborative validation on cameras

Surveillance system implementation and evaluation

Possible future directions:

Low illumination and bad weather effects should be eliminated.

Distortion rate should be further decreased by proper video 
compression.

Monitoring scenarios and camera types can be extended.
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